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Abstract

Time synchronization is a critical piece of infrastructure for any distributed system. Distributed,
wireless sensor networks make extensive use of synchronized time in many contexts—for example, in
forming TDMA schedules, integrating a time-series of proximity detections into a velocity estimate, in
detecting redundant detections of a phenomenon from multiple sensors, and in distributed beamforming
systems. The variety of uses leads to highly varied and non-standard requirements in the scope, lifetime,
and maximum error of the synchronization achieved, as well as the time and energy required to achieve
it. Existing time synchronization methods were not created with wireless sensor networks in mind, and
need to be extended or redesigned to meet the new requirements and constraints.

Our proposed work centers around the development of new time synchronization methods, their
characterization according to metrics relevant to wireless sensor networks, and a proof-of-concept im-
plementation of an application that makes use of our synchronization primitives. In this proposal, we first
describe a number of metrics that we have found useful for the characterization of time synchronization
services. Using these metrics, we describe existing services, and compare them to the synchroniza-
tion requirements of future sensor networks. We also present an implementation of our own low-power
synchronization scheme, post-facto synchronization, and describe an experiment that characterizes its
performance for creating short-lived and localized but high-precision synchronization using very little
energy. Finally, we describe our work plan.
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1. Introduction

1.1. Wireless Sensor Networks

Recent advances in miniaturization and low-cost, low-power design have led to active research in large-
scale, highly distributed systems of small, wireless, low-power, unattended sensors and actuators [ADL 798,
KKP99, EGHK99]. The vision of many researchers is to create sensor-rich “smart environments” through
planned or ad-hoc deployment of thousands of sensors, each with a short-range wireless communications
channel, and capable of detecting ambient conditions such as temperature, movement, sound, light, or the
presence of certain objects.

While this new class of distributed systems has the potential to enable a wide range of applications,
it also poses serious design challenges, described more fully by KKP [KKP99] and EGHK [EGHK99].
The sheer number of these devices makes global broadcasting undesirable; wireless nodes’ limited com-
munication range relative to the geographic area spanned by the system often makes global broadcasting
so inefficient that it is infeasible. As a consequence, many argue that nodes must depend on localized
algorithms—making control decisions based solely on interactions with neighbors, without global system
knowledge [EGHK99, IGE0Q].

Another important feature that distinguishes sensor networks from traditional distributed systems is their
need for energy efficiency. Many nodes in the emerging sensor systems will be untethered, having only finite
energy reserves from a battery. Unlike laptops or other handheld devices that enjoy constant attention and
maintenance by humans, the scale of a sensor net’s deployment will make replenishment of these reserves
impossible. This requirement pervades all aspects of the system’s design. For example, nodes must remain
off or in a low-power state as often as possible; when on, they must maximize the usefulness of every bit
transmitted or received [PKOO].

1.2. Time Synchronization

Time synchronization is a critical piece of infrastructure for any distributed system. Distributed, wireless
sensor networks make particularly extensive use of synchronized time: for example, to integrate a time-
series of proximity detections into a velocity estimate [CEET01]; to measure the time-of-flight of sound for
localizing its source [Gir00]; to distribute a beamforming array [YHR198]; or to suppress redundant mes-
sages by recognizing that they describe duplicate detections of the same event by different sensors [IGEQO].
Sensor networks also have many of the same requirements as traditional distributed systems: accurate times-
tamps are often needed in cryptographic schemes, to coordinate events scheduled in the future, for ordering
logged events during system debugging, and so forth.

The broad nature of sensor network applications leads to timing requirements whose scope, lifetime, and
maximum error differ from traditional systems. In addition, many nodes in the emerging sensor systems
will be untethered and therefore have small energy reserves. All communication—even passive listening—
will have a significant effect on those reserves. Time synchronization methods for sensor networks must
therefore also be mindful of the time and energy that they consume.

In this paper, we argue that the heterogeneity of requirements across sensor network applications, the
need for energy-efficiency and other constraints not found in conventional distributed systems, and even
the variety of hardware on which sensor networks will be deployed, make current synchronization schemes
inadequate to the task. In sensor networks, existing time synchronization methods will need to be
extended and combined in new waysin order to provide service that meets the needs of applications
with the minimum possible energy expenditures. The development of these new methods is the core of
our proposal.



We will also present our idea for post-facto synchronization, an extremely low-power method of syn-
chronizing clocks in a local area when accurate timestamps are needed for specific events. We also present
an experiment that suggests this multi-modal scheme is capable of achieving a maximum error on the order
of 1usec—an order of magnitude better than either of the two modes of which it is composed. These re-
sults are encouraging, although still preliminary and performed under idealized laboratory conditions. We
believe that our pilot study lends weight to our methods and that further investigation is warranted.

We begin our discussion in Section 2, describing a number of metrics that can be used to classify both
the types of service provided by synchronization methods and the requirements of applications that use
those methods. In Section 3, we justify in more detail the need for synchronized time in sensor networks.
Related work is reviewed in Section 4. Section 5 argues why the existing work in the field is insufficient
for use in the new sensor network regime, and outlines our proposed contributions. Section 6 describes our
post-facto synchronization technique and presents an experiment that characterizes its performance. Our
proposed thesis work plan is described in detail in Section 7, and conclusions are drawn in Section 8.

2. Metrics and Ter minology

Before starting our discussion in earnest, we will first define a set of metrics that we have found useful
for characterizing time synchronization in sensor networks. In studying both methods and applications, we
have found five metrics to be especially important:

e Maximum Error—either the dispersion among a group of peers, or maximum deviation of the mem-
bers from an external standard.

e Lifetime—which can range from persistent synchronization that lasts as long as the network operates,
to nearly instantaneous (useful, for example, if nodes want to compare the detection time of a single
event).

e Scope and Availability—the geographic span of nodes that are synchronized, and completeness of
coverage within that region.

o Efficiency—the time and energy expenditures needed to achieve synchronization.

e Cost and Form Factor—which can become particularly important in wireless sensor networks that
involve thousands of tiny, disposable sensor nodes.

The services provided by different time synchronization methods fall into many disparate points in this
parameter space. All of them make tradeoffs—no single method is optimal along all axes.

To illustrate the use of these metrics, consider the time service provided by the U.S. Global Positioning
System [Kap96] (described in more detail in Section 4). Consumer GPS receivers can synchronize nodes
to a persistent-lifetime time standard that is Earth-wide in scope within a maximum of 200ns [MKMT99].
However, GPS units often can not be used (e.g., inside structures, underwater, during Mars exploration),
can require several minutes of settling time. In some cases, GPS units might also be large, high-power and
expensive compared to small sensors.

In contrast, consider a small group of nodes with short-range, low-power radios. If one node transmits
a signal, the others can use that signal as a time reference—for example, to compare the times at which
they recorded a sound. The synchronization provided by this simple “pulse” is local in scope and its error



comes primarily from variable delays on the radio receivers and propagation delay of the radio waves. For
a given error bound, the lifetime of the synchronization is also finite as the nodes’ clocks will wander after
the initial pulse. However, the pulse is fast and energy-efficient because it only requires the transmission of
a single signal.

3. Motivations

Why do sensor nets need synchronized time?

Before discussing time synchronization methods, we must first clarify its motivations. In this section,
we will describe some common uses of synchronized time in sensor networks. The wide net cast by the
disparate application requirements is important; we will argue later that it precludes the use of any single
sync method for all applications. Indeed, while the related work in this field (reviewed in Section 4) is
extensive, it often relies on assumptions that are violated in the new sensor network regime.

3.1. Distributed beam-forming and sensor fusion

In recent years, interest has grown in signal processing techniques such as sensor fusion and beam-forming.
These are techniques used to combine the inputs of multiple sensors, sometimes using heterogeneous modal-
ities, in applications such as noise reduction [YHR 98], target tracking, and process control. This kind of
DSP will serve as an important basis for sensor networks, but much of the extensive prior art in the field
assumes centralized sensor fusion. That is, even if the sensors gathering data are distributed, sensor data
is often assumed to be consolidated at one site before processing. However, centralized processing makes
use of implicit time synchronization; synchronization that must be made explicit to create a fully distributed
system.

For example, consider a beamforming array designed to localize the source of sound, such as that
described by YHRCL in [YHRT98]. The array computes phase differences of signals received by sensors
at different locations. From these phase differences, the processor can infer the time of flight of the sound
from its source to each sensor. This allows the sound’s source to be localized with respect to the spatial
reference frame defined by the sensors in the array. However, this makes the implicit assumption that
the sensors themselves are synchronized in time, as well. In other words, the beam-forming computation
assumes that the observed phase differences are due to differences in the time of flight from the sound source
to the sensor, and not variable delays incurred in transmitting signals from the sensor to the processor. In
a centralized system, where there is tight coupling from sensors to a single central processor, this is a valid
assumption; the sensor data share an implicitly synchronized time-base by virtue of the fact that the audio
data are all fed to the same processor. However, for such an array to be implemented on a fully distributed
set of autonomous wireless sensors, explicit time synchronization of the sensors is needed.

It is important to note that a beam-forming array actually contains two separate (but related) time-
synchronization problems. Specifically, to measure the time-of-flight from the sound’s source to the receiv-
ing sensors, some form of synchronization must exist between the sender and receiver. In other words, the
array needs to know the time of emission relative to the time of detection in order to measure time-of-flight.
This latter problem has traditionally been solved with “over-sampling”: treating the clock bias between the
emitter and receivers as an extra unknown in the system of localization equations, and adding an extra sen-
sor measurement to balance the extra unknown. This works only if the receivers are synchronized with each
other; that is, if there is only a single clock bias between the sender and any receiver. Therefore, the need
for explicit receiver synchronization as described earlier is not obviated by having extra sensors. Without



correlated receivers, each additional sensor brings with it both a measurement and its own unknown clock
bias—i.e., adding both an equation and an unknown to the system.

3.2. Multi-sensor integration

A common theme in sensor network design is that of multi-sensor integration—combining information
gleaned from multiple sensors into a larger world-view not detectable by any single sensor alone. Unlike
the previous examples, in which sensor fusion is done at the signal processing level, sensor integration
focuses on algorithmically combining higher-level knowledge.

For example, consider a group of nodes that know their geographic positions and can each detect prox-
imity to some static phenomenon P. (The detection might involve localization as described in the previous
section.) Alone, a single sensor can tell that it is near P. However, by integrating their knowledge, the joint
network can describe more than just a set of locations covered by P; it can also compute P’s size. In some
sense, the whole of information has become greater than the sum of the parts.

This type of emergent behavior does not always require synchronized time. If P is static, as in the
previous example, time sync may not be needed at all. However, what if P is moving, and the objective is
to report P’s speed and direction? At first glance, it might seem that the object localization system we de-
scribed above can be easily converted into a motion tracking system, simply by performing repeated queries
of the object tracking system over time. If the data indicating the location of our tracked phenomenon P
all arrives at the same processor for integration, perhaps no synchronization across nodes is required. The
integrator can simply timestamp each localization reading as it arrives and will then have all the information
required to integrate the series into motion data. In this case, it seems that the time synchronization problem
has been avoided entirely.

This scheme has serious limitations discussed below, but it does work in some contexts. In particular, if
the tracked object is moving very slowly relative to the delay between the sensors and the integration point,
our brute force approach might work. For example, imagine an asset tracking system capable of locating
specific pieces of equipment. If we wish to define the “motion” of an object as the history of all people who
have used it, an equipment motion tracker might be designed very simply. We can merely ask the object
tracker for the equipment’s location several times a day, and compile a list over time of offices in which the
equipment has been located. This works because we assume someone who uses equipment does so over the
course of days or weeks — extremely slowly on the timescale over which the object-tracker can locate an
object and report its location to the user or a data integrator.

This method has serious limitations in contexts where the timing requirements are more critical than in
our equipment example. If the tracked phenomenon moves quickly, many factors that were insignificant
in equipment tracking become overwhelming. For example, consider the situation likely in wireless sensor
networks: a spatially distributed group of sensors, each capable of communication over a very short range
communication relative to the total geographic area of sensor coverage. Information can only travel through
this network hop-by-hop; therefore, the latency of messages from any given sensor to a central integrator
will vary with the distance from the sensor to the integration point. In this situation, the brute force approach
may fail.

The reason for the failure of the brute force approach is instructive to consider. The simple equipment
tracker essentially assumed that the travel time of messages from the equipment sensors back to the inte-
gration point was zero: we ask the question “Where is this object?” and receive a reply that we assume
is instantaneous and still correct when it is received. In the case of tracking equipment, this is probably a
valid assumption because a specific piece of equipment is unlikely to move on the scale of time required to



propagate a message through the sensor network. However, this assumption breaks down for faster-moving
phenomena. Using the brute force centralized approach, it will be impossible to accurately track the motion
of any phenomenon moving at speeds that approach the time scale of the networks’ round trip time.

There are additional motivations for doing localized and distributed detection. A centralized aggregation
point is not scalable and is prone to failures. In addition, in sensor networks where energy-efficiency is
critical, it is unwise to design a system where a large volume of messages must be routed through many
power-consuming nodes. A system that transmits each individual location reading through every node on
the path from the phenomenon back to the integration point will have a high energy cost.

These limitations suggest that sensor readings should be time-stamped inside of the network, as near
as possible to the original sensor event. Doing so dramatically reduces the variable delay introduced by
message transmission latencies. Timestamping inside the network also allows tracking data to be post-
processed into motion data, aggregated, and summarized inside of the network, thus requiring a greatly
reduced number of bits to travel back to the user. All of these advantages, however, do come with a price:
sensors in the network must share a common time base in order to ensure the consistency of readings taken
at multiple sensors.

In a motion tracking application, the allowable synchronization error in nodes’ clocks is informed by
factors such as the speed of the target relative to sensor density and detection range. It is also affected by the
system’s desired spatial precision and detection frequency. The tighter time synchronization is achieved,
the greater precision is possible in the tracking of motion by a collection of proximity detectors. Very
slow moving objects may be tracked sufficiently by nodes with loosely synchronized clocks, but tighter and
tighter synchronization is required if we wish to track faster and faster objects—or perhaps even phenomena
such as wave-fronts.

3.3. In network data aggregation and duplicate suppression

A feature common to sensor networks due to the high energy cost of communication compared to com-
putation [PKO0Q] is local processing, summarization, and aggregation of data in order to minimize the size
and frequency of transmissions. Suppression of duplicate notifications of the same event from a group of
nearby sensors can result in significant energy savings [IGE00]. To recognize duplicates, events must be
timestamped with a precision on the same order as the event frequency; this might only be tens or hundreds
of milliseconds. Since the data may be sent a long way through the network and even cached by many
of the intermediate nodes, the synchronization must be broad in scope and long in lifetime—perhaps even
persistent.

3.4. Energy-efficient radio scheduling

Low-power, short-range radios of the variety typically used for wireless sensor networks expend virtually
as much energy passively listening to the channel as they do during transmission [PK00, APKO0OQ]. Sensor
net MAC protocols are frequently designed around this assumption, aiming to keep the radio off for as long
as possible. TDMA is a common starting point because of the natural mechanism it provides for adjusting
the radio’s duty cycle, trading energy expenditure for other factors such as channel utilization and message
latency [Soh00].

While distributed time synchronization is central to any TDMA scheme, it is considerably more impor-
tant in wireless sensor nets than in traditional (e.g. cellular phone) TDMA networks. Traditional wireless
MAC protocols value only high channel utilization. Good time sync is therefore important because it short-



ens the guard time, but also easy because each frame received implicitly imparts information about the
sender’s clock. This information can be used to frequently re-synchronize a node’s clock with those of its
peers [LS96].

In sensor networks, the picture changes considerably. Energy-efficiency is the highest priority, so local-
ized algorithms are used to minimize both the size and frequency of messages. Long inter-message intervals
result in greater clock drift and therefore longer guard times. The high energy cost of passive listening de-
scribed above makes these guard times expensive. In addition, small data payloads make the guard times
a large proportion of the total time a receiver is listening. These factors make good clock synchronization
critical for saving energy, and suggest a new technique is needed to achieve it.

3.5. Uses common in traditional distributed systems

The uses of time synchronization we have described so far have been specific to sensor networks, relating
to their unique requirements in distributed signal processing, energy efficiency, and localized computation.
However, at its core, a sensor network is also a distributed system, where time synchronization of vari-
ous forms has been used extensively for some time. Many of these more traditional uses apply in sensor
networks as well. For example:

e Logging and Debugging. During design and debugging, it is often necessary correlate logs of many
different nodes’ activities to understand the global system’s behavior. Logs without synchronized
time often make it difficult or impossible to determine causality, or reconstruct an exact sequence of
events.

e Interaction with Users. People use “civilian time”—their wristwatches—when making requests such
as “show me activity in the southeast quadrant between midnight and 4 A.M.” For this request to be
meaningful, certain nodes in a sensor net need to be synchronized with an external time standard. In
some sense, this may be an orthogonal requirement to those discussed previously; many applications
of time-sync only require internal consistency.

e Cryptography. Perhaps due to sensor nets’ applicability in military applications, there has already
been significant interest in cryptographically protecting sensor network messages [HSW T, Hil]. Cer-
tain authentication schemes, such as the Kerberos Authentication Service [SNS88], depend on syn-
chronized time to prevent replay attacks and other forms of circumvention.*

e Database Consistency. Database update protocols often require synchronized time to serialize trans-
actions or eliminate duplicate updates (for example, in [LSW91]). There has been recent interest in
expanding the domain of databases to encompass embedded sensor network queries [BGS01], using
databases running inside the network itself.

4. Related Work

4.1. Distributed Clocks and Network Time Protocols

Perhaps the seminal work in computer clock synchronization is Lamport’s work that elucidates the impor-
tance of virtual clocks in systems where causality is more important than absolute time [Lam78]. In his

!Davis and Geer point out in [DGT96] that, in some contexts such as Kerberos, challenge-response can take the place of accurate
timestamps.



system, computer has a local clock which is incremented monotonically after each event that it observes.
Each message sent to another node also carries the timestamp of the sender with it. When a node receives
a message, it advances its local clock its current value is less than the value in the received message. This
simple scheme is enough to guarantee that timestamps can reconstruct the total ordering of any sequence of
events that were causal. That is, if event A causes event B, the timestamp of A is less than the timestamp
of B.

Over the years, many protocols have been designed for maintaining synchronization of physical clocks
over computer networks [GZ89, ST87, Cri89, Mil94]. These protocols all have basic features in common:
a simple connectionless messaging protocol; exchange of clock information between clients and one (or a
few) servers; methods for mitigating the effects of nondeterminism in message delivery and processing; and
an algorithm on the client for updating local clocks based on information received from a server. They do
differ in certain details: whether the network is kept internally consistent or synchronized to an external
standard; whether the server is considered to be the canonical clock, or merely an arbiter of client clocks,
and so on.

Mills” NTP [Mil94] stands out by virtue of its scalability, robustness to various types of failures, self-
configuration, security in the face of deliberate sabotage, and widespread deployment. NTP allows construc-
tion of a hierarchy of time servers, multiply rooted at sources of canonical, external time (see Section 4.2).
Levels closer to the root have better accuracy and precision to the external standard, but lower levels can be
more populous due to the high degree of fan-out possible from each server. Clients are typically children of
multiple higher-layer nodes, using statistical methods to determine the best estimate of the current time.

As we will see in Section 6, an important feature of NTP is that it keeps a running estimate of a client
clock’s frequency relative to an external standard. This facilitates reasonably accurate timekeeping during
long periods of disconnected operation.

4.2. National Time Standards and Time Transfer

Some methods of physical clock synchronization strive only to maintain internal consistency. However,
others distribute time from an external standard—an “out of band” source of time. Frequently, these ex-
ternal sources are the time provided by government agencies tasked with maintaining and disseminating
a country’s official time. For example, the U.S. Naval Observatory’s Time Service Department maintains
the official time of the United States. USNO’s “Master Clock #2” is steered by an ensemble of advanced
hydrogen maser and cesium frequency standards [MMK99]. UTC, the most commonly used international
standard timescale, is based on a weighted average of over 200 atomic clocks at over 50 such national
laboratories [Tho97]. It is calculated at BIPM (Bureau International des Poids et Mesures) in Paris, France.

Many of these laboratories are involved in active research in the area of time transfer—that is, syn-
chronization of geographically distant clocks. This ability is a fundamental requirement for any national
laboratory whose mission is to transmit time to its users (citizens, the military, and so forth). It is also the
technology that enables computation of aggregate time standards such as UTC. Many modern time transfer
schemes have been developed.

Historically speaking, they all harken back to much older methods. An unprecedented surge of interest
in timekeeping was seen in the 14th century as mechanical clocks swept Europe, often found in the belfries
and towers of city halls and churches [Lan83]. Clocks in other forms had been known for at least a thousand
years beforehand, such as the sundial or water-driven clepsydra. But these newer mechanical clocks were
the first to be accompanied by automatically ringing bells—a simple form of time transfer. In 1845, the
U.S. Naval Observatory began to disseminate time by dropping a “time ball” from atop a flagpole every day



precisely at noon [BD82]. The ball was often used by ships anchored in the Potomac river that needed a
calibrated chronometer for navigation before setting out to sea [SA98].

In modern times, the state of the art is in radio time transfer methods. The first of these, seen originally in
the 1920’s, was the a voice announcer on radio station WWYV operated by the National Institute of Standards
and Technology. WWYV s still in operation today, along with its more recent cousin, WWVB, which
provides computer-readable signals in stead of voice announcements. The modern-day service provides
references to U.S. time and frequency standards within one part in 10'3.

The most active subject of modern-day research is in two-way satellite time transfer [SPK00]. TWSTT
allows two clocks connected by a satellite relay to both compute their offset from their peer. It is superior
to methods such as WWV’s radio broadcasts because it transfer is two-way, instead of solely from sender to
receiver. Use of satellites also allows intercontinental time transfer. TWSTT methods are used to connect
the time and frequency standards of national laboratories to BIPM in France for computation of international
timescales.

Satellite navigation systems—most notably, GPS [Kap96]—have an important relationship to time. GPS
provides localization service by allowing users to measure time of flight of radio signals from satellites (at
known locations) to a receiver. The system needs synchronized time for the scheme to work; it also provides
one-way time transfer to the user as a “side effect” of localization. (Recent work has focused on using GPS
for two-way time transfer as well [LL99].) Although a complete discussion of the technical details is beyond
the scope of this document, it is important to note that GPS is both a user and disseminator of USNO’s
timescale. Consumer GPS receivers can synchronize nodes to UTC(USNO) within 200ns [MKMT99].

4.3. Methods for avoiding the problem

In some cases, the time synchronization problem can be solved by not solving it—designing the system to
avoid the need for the problem to be solved. A number of systems exemplify this design principle. Specifi-
cally, it is instructive to reconsider several localization and ranging systems. (The relationship between time
and space is closely intertwined; time synchronization often goes hand in hand with localization.)

Many localization systems estimate the distance between two points by measuring the time-of-flight of
some phenomenon from one point to the other. Generally speaking, a system emits a recognizable signal
at a sender .S, then times the interval required for the signal to arrive at a receiver R. If the propagation
speed of the phenomenon is known, the time measurement can be converted to distance. The fundamental
problem that must be solved is synchronizing S and R in time so that the propagation delay can be properly
measured. We will briefly examine three systems that solve this problem in three different ways.

Pinpoint, Inc.’s RF-ID system [?] avoids the synchronization problem by setting S = R; that is, making
S and R the same node. The RF-ID system emits an RF pulse which is modulated by the target and reflected
back to the sender. The sender and receiver are implicitly synchronized by virtue of being the same device.
This allows a measurement of the signal’s round-trip time, and therefore the range from the sender/receiver
to the target.

The GPS satellite system, mentioned earlier, also localizes by measuring the time-of-flight of RF signals.
GPS also avoids synchronizing S (the satellites) with R (the user’s receiver) by treating the clock bias
between S and R as an unknown. Because there are many redundant sending satellites, the receiver can
lock onto one additional satellite, solving for its (X, Y, Z,T') instead of only (X,Y, Z). As we discussed
earlier in Section 3.1, this only works by virtue of the senders being synchronized with each other.

Finally, ORL’s Active Bat system [WJH97] synchronizes S with R by using a synchronization modality
different from the measurement modality. In their system, modulo certain details, S simultaneously emits



a (fast) RF pulse and a (slow) ultrasound pulse. The time of flight of the RF pulse is negligible compared
to that of the ultrasound. The RF pulse can be considered an instantaneous phenomenon that establishes
synchronization between S and R with respect to the ultrasound pulse.

Of course, the localization application (and these implementations in particular) are only representative.
Many other systems use similar designs to avoid the need for synchronized clocks. For example, in the
LOCUS distributed operating system [PWBT87], consistency of distributed filesystem operations is ensured
by dynamically selecting a single node as a synchronization point for a particular file-descriptor. By forcing
all file operations to go through the synchronization point, no clock sync is needed to achieve maintain a
consistent view of the total ordering of file events.

5. Sensor Network Time

5.1. The Need for Something New

We argued in Section 3 that it is important for sensor networks to have access to synchronized time. How-
ever, in Section 4, we described a wide variety of methods for synchronizing time. Is something new
needed?

To answer this question, we it is important to first consider what sort of synchronization a sensor
network needs. Because of the highly application-specific nature of a given network, it is hard to make
generalizations—but even within a single application, time sync is needed at many layers, each with its on
requirements. For example, consider all the potential uses of time-sync in an object tracking system:

e A single detection of the target might be performed by a beamforming array designed to localize
the source of sound, such as that described by YHRCL in [YHRT98]. The array described shares a
common time base by virtue of the fact that the audio data are all fed to the same processor. For such
an array to be implemented on a fully distributed set of autonomous wireless sensors, network time
synchronization is needed. This synchronization would require maximum error of about 100usec but
could be limited in lifetime and local in scope.

e Multiple position detections can be integrated into speed and direction estimates. The timebase re-
quired for this computation needs to be longer in lifetime than the above, and larger in scope (probably
encompassing several hops, radio-wise). The maximum error is connected to the speed of the target,
rather than the speed of sound.

e \We discussed the importance of aggregation in sensor networks in Section 3.3. Information about
the target collected from all over the network needs to be aggregated and processed hierarchically
in lieu of simply sending all the raw data back to a single aggregation point. Partially summarized
data may arrive at an aggregation point that consists of readings originally collected from a very
distant node. Although the synchronization error tolerances for this kind of aggregation would be
very relaxed compared to beam-forming, the timebase needs to be much larger in scope and much
longer in lifetime—perhaps even persistent.

e Interactions with users (e.g., “What was here some time around 4A.M.?” are likely to have very
relaxed error constraints (seconds, perhaps even a minute), but—unlike other examples—requires
external synchronization, rather than just internal consistency.



Of course, underlying all of these requirements it the ever-present need for energy-efficiency. Ignorance
of this requirement, while entirely justified in traditional contexts, is the Achilles’ heel of most existing
time synchronization methods. Although protocols such as NTP are conservative in their use of bandwidth,
they are extremely inefficient in this new context where radios consume significant power even by passively
listening for messages [PK0Q].

Cost and form-factor are also important restrictions. The smallest nodes in a network will, perhaps, be
disposable and small enough to be attached directly to the phenomena that they are monitoring. These are
unlikely to have room in their packaging or budgets that allows anything more than a local oscillator and a
short-range radio.

We conclude, therefore, that no existing method meets a sensor net application’s diverse synchronization
requirements while still being compatible with the network’s energy budget, cost structure, and form factor.

Something new is needed. But what?

5.2. Design Principles

While our earlier discussion highlights the inadequacy of current methods, it also gives structure to solu-
tions. In this section, we outline the general design principles under which we plan to develop new methods
of time synchronization for sensor networks.

5.2.1. Multi-modal synchronization

The heterogeneity in the synchronization requirements across and within sensor network applications is
daunting. Even without the constraints of limited energy, cost, and form-factor, no single method is likely
to meet every one of these requirements. With these extra constraints, finding such a method seems a
completely lost cause.

Because it is impossible for any single synchronization method to appropriate in all situations, sensors
should have multiple methods available. By modifying existing methods, developing new ones, and even
composing them into derivative methods, we hope to provide an entire palette of time sync methods that,
taken together, covers a good portion of the parameter space we described in Section 2.

A multi-modal solution is also a good choice for building a system that is energy-efficient. If a node can
dynamically trade error for energy, or scope for convergence time, it can avoid “paying” for something that
it doesn’t need. Ideally, the algorithms should also be tunable—allowing finer control over an algorithm
than simply turning it on or off. Our goal is to implement and characterize a set of methods rich enough so
that all applications will have one available that is necessary and sufficient for its needs.

5.2.2. Tiered architectures

Although Moore’s law predicts that hardware for sensor networks will inexorably become smaller, cheaper,
and more powerful, technological advances will never prevent the need to make tradeoffs. Even as our
notions of metrics such as “fast” and “small”” evolve, there will always be compromises: nodes will need to
be faster or more energy-efficient, smaller or more capable, cheaper or more durable.

Instead of choosing a single hardware platform that makes a particular set of compromises, we believe
an effective design is one that uses a tiered platform consisting of a heterogeneous collection of hardware.
Larger, faster, and more expensive hardware (beacons, aggregation points) can be used more effectively by
also using smaller, cheaper, and more limited nodes (sensors, tags). An analogy can be made to the memory
hierarchy commonly found in desktop computer systems. CPUs typically have extremely expensive, fast
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on-chip cache, backed by slower but larger L2 cache, main memory, and ultimately on-disk swap space.
This organization, combined with a tendency in computation for locality of reference, results in a memory
system that appears to be as large and as cheap (per-byte) as the swap space, but as fast as the on-chip cache
memory. In sensor networks, where localized algorithms are a primary design goal, similar benefits can be
realized by creating the network from a spectrum of hardware ranging from small, cheap, and numerous, to
large, expensive, and powerful.

The smallest nodes are unlikely to have little more than a local oscillator and a short-range radio. How-
ever, they can be supported by other nodes in the network that are better endowed, with longer-range radios
capable of synchronizing with more remote parts of the network, or in some cases with external time sources
such as GPS or WWVB.

5.3. Our Approach

Using these principles as a guide, we are building new time synchronization services for sensor networks.
Specifically, we are

Extending existing sync methods to be energy-aware

Developing new sync methods, including compositions of basic methods

Characterizing our new techniques in the parameter space we defined

Building a testbed to realize our methods with actual applications

Starting down this path, we have developed a technique called post-facto synchronization to reconcile
the need of many applications for accurate sensor event timestamps with the desire to keep the node off in
order to conserve energy. In the next section, we describe this technique and an experiment that characterizes
its performance.

6. Post-Facto Synchronization

To save energy in a sensor network, it is a desirable to keep nodes in a low-power state, if not turned off
completely, for as long as possible. Sensor network hardware is often designed with this goal in mind;
processor have various “sleep” modes or are capable of powering down high-energy peripherals when not
in use.

This type of design is exemplified by the WINS platform [ADL*98], which has an extremely low-power
“pre-processor” that is capable of rudimentary signal processing. Normally, the entire node is powered down
except for the pre-processor. When the pre-processor detects a potentially interesting signal, it powers on
the general purpose processor for further analysis. The CPU, in turn, can power on the node’s radio if it
determines that an event has occurred that needs to be reported.

Such designs allow the components that consume the most energy to be powered for the least time,
but also pose significant problems if we wish to keep synchronized time. Traditional methods try to keep
the clock disciplined at all times so that an accurate timestamp is always available. What happens if the
radio—our external source of time and frequency standards—is continuously off for hours at a time? Or, in
the case of a platform like WINS, what if the general-purpose processor that knows how to discipline the
clock is also off?
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Our solution to this problem is post-facto synchronization. In our scheme, nodes’ clocks are normally
unsynchronized. When a stimulus arrives, each node records the time of the stimulus with respect to its own
local clock. Immediately afterwards, a “third party” node—acting as a beacon—broadcasts a synchroniza-
tion pulse to all nodes in the area using its radio. Nodes that receive this pulse use it as an instantaneous
time reference and can normalize their stimulus timestamps with respect to that reference.

This kind of synchronization is not applicable in all situations, of course: it is limited in scope to the
transmit range of the beacon and creates only an “instant” of synchronized time. This makes it inappropriate
for an application that needs to communicate a timestamp over long distances or times. However, it does
provide exactly the service necessary for beam-forming applications, localization systems, and other situa-
tions in which we need to compare the relative arrival times of a signal at a set of spatially local detectors.

6.1. Expected Sources of Error

There are three main factors that affect the accuracy and precision achievable by post-facto synchroniza-
tion. Roughly in order of importance, they are: receiver clock skew, variable delays in the receivers, and
propagation delay of the synchronization pulse.

e Skew in thereceivers local clocks. Post-facto synchronization requires that each receiver accu-
rately measure the interval that elapses between their detection of the event and the arrival of the
synchronization pulse. However, nodes’ clocks do not run at exactly the same rate, causing error in
that measurement. Since clock skew among the group will cause the achievable error bound to decay
as time elapses between the stimulus and pulse, it is important to minimize this interval.

One way of reducing this error is to use NTP to discipline the frequency of each node’s oscillator.
This exemplifies our idea of multi-modal synchronization. Although running NTP “full-time” defeats
one of the original goals of keeping the main processor or radio off, it can still be useful for frequency
discipline (much more so than for phase correction) at very low duty cycles.

e Variable delays on the receivers. Even if the synchronization signal arrives at the same instant
at all receivers, there is no guarantee that each receiver will detect the signal at the same instant.
Nondeterminism in the detection hardware and operating system issues such as variable interrupt
latency can contribute unpredictable delays that are inconsistent across receivers. The detection of
the event itself (audio, seismic pulses, etc.) may also have nondeterministic delays associated with it.
These delays will contribute directly to the synchronization error.

Our design avoids error due to variable delays in the sender by considering the sender of the sync
pulse to be a “third party.” That is, the receivers are considered to be synchronized only with each
other, not with the beacon.

It is interesting to note that the error caused by variable delay is the same irrespective of the time
elapsed between the event and the sync pulse. This is in contrast to error due to clock skew that grows
over time.

e Propagation delay of the synchronization pulse. Our method assumes that the synchronization
pulse is an absolute time reference at the instant of its arrival—that is, that it arrives at every node at
exactly the same time. In reality, this is not the case due to the finite propagation speed of RF signals.
Synchronization will never be achievable with accuracy better than the difference in the propagation
delay between the various receivers and the synchronization beacon.
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This source of error makes our technique most useful when comparing arrival times of phenomena
that propagate much more slowly than RF, such as audio. The six-order-of-magnitude difference in
the speed of RF and audio has been similarly exploited in the past in systems such as the ORL’s Active
Bat [WJH97] and Girod’s acoustic rangefinder [Gir00].

6.2. Empirical Study

We designed an experiment to characterize the performance of our post-facto synchronization scheme. The
experiment attempts to measure the sources of error described in the previous section by delivering a stimu-
lus to each receiver at the same instant, and asking the receivers to timestamp the arrival time of that stimulus
with respect to a synchronization pulse delivered via the same mechanism. ldeally, if there are no variable
delays in the receivers or skew among the receivers’ local oscillators, the times reported for the stimulus
should be identical. In reality, these sources of error cause the dispersion among the reported times to grow
as more time elapses between the stimulus and the sync pulse. The decay in the error bound should happen
more slowly if NTP is simultaneously used to discipline the frequency of the receivers’ oscillators.

We realized this experiment with one sender and ten receivers, each of which was ordinary PC hardware
(Dell OptiPlex GX1 workstations) running the RedHat Linux operating system. Each stimulus and sync
pulse was a simple TTL logic signal sent and received by the standard PC parallel port.? In each trial, each
receiver reported its perceived elapsed time between the stimulus and synchronization pulse according to
the system clock, which has 1usec resolution. We defined the dispersion to be the standard deviation from
the mean of these reported values. To minimize the variable delay introduced by the operating system,
the times of the incoming pulses were recorded by the parallel port interrupt handler using a Linux kernel
module.

In order to understand how dispersion is affected by the time elapsed between stimulus and sync pulse,
we tested the dispersion for 21 different values of this elapsed time, ranging from 24 uisec to 224 pusec (16usec
to 16.8 seconds). For each elapsed-time value, we performed 50 trials and reported the mean. These 1,050
trials were performed in a random order over the course of one hour to minimize the effects of systematic
error (e.g. changes in network activity that affect interrupt latency).

For comparison, this entire experiment was performed in three different configurations:

1. The experiment was run on the “raw clock”: that is, while the receivers’ clocks were not disciplined
by any external frequency standard.

2. An NTPva3 client was started on each receiver and allowed to synchronize (via Ethernet) to our lab’s
stratum-1 GPS clock for ten days. The experiment was then repeated while NTP was running.

3. NTP’s external time source was removed, and the NTP daemon was allowed to free-run for several
days using its last-known estimates of the local clock’s frequency. The experiment was then repeated.

To compare our post-facto method to the error bound achievable by NTP alone, we recorded two dif-
ferent stimulus-arrival timestamps when running the experiment in Configuration 2: the time with respect
to the sync pulse and the time according to the NTP-disciplined local clock. Similar to the other configura-
tions, a dispersion value for NTP was computed for each stimulus by computing the standard deviation from
the mean of the reported timestamps. The horizontal line in Figure 1 is the mean of those 1,050 dispersion
values—101.70 uSsec.

2This was accomplished using the author’s parallel port pin programming library for Linux, par api n, which is freely available
at http://www.circlemud.org/jelson/software/parapin
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Figure 1: Synchronization error using post-facto time synchronization without external frequency discipline, with
discipline from an active NTP time source, and with free-running NTP discipline (external time source removed
after the oscillator’s frequency was estimated). These are compared to the error bound achievable with NTP alone
(the horizontal line near 100usec). The breakpoint seen near 50msec is where error due to clock skew, which grows
proportionally with the time elapsed from stimulus to sync pulse, overcomes other sources of error that are independent
of this interval. Each point represents the dispersion experienced among 10 receivers, averaged over 50 trials.

Our results are shown in Figure 1. 3

6.3. Discussion

The results shown in Figure 1 illuminate a number of aspects of the system. First, the experiment gives
insight into the nature of its error sources. The results with NTP-disciplined clock case are equivalent to
undisciplined clocks when the interval is less than ~ 50msec, suggesting that the primary source of error
in these cases is variable delays on the receiver (for example, due to interrupt latency or the sampling rate
in the analog-to-digital conversion hardware in the PC parallel port). Beyond 50msec, the two experiments
diverge, suggesting that clock skew becomes the primary source of error at this point.

Overall, the performance of post-facto synchronization was quite good. When NTP was used to dis-
cipline the local oscillator’s frequency, an error bound very near to the clock’s resolution of 1usec was
achieved. This is significantly better than the 100usec achieved by NTP alone. Clearly, the combination
of NTP’s frequency estimation with the sync pulse’s instantaneous phase correction was very effective. In-
deed, the multi-modal combination’s maximum error is better than either mode can achieve alone. We find
this a very encouraging indicator for the multi-modal synchronization framework we proposed at the end of
Section 5.

Without NTP discipline, the post-facto method still performs reasonably well for short intervals between
stimulus and sync pulse. For longer intervals, we are at the mercy of happenstance: the error depends on
the natural frequencies of whatever oscillators we happen to have in our receiver set.

3“The joy of engineering is to find a straight line on a double logarithmic diagram.” ~Thomas Koenig
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Perhaps the most exciting result, however, is shown in the experiment where NTP disciplined the nodes’
local clocks using only the last-known-estimate of frequency, after the external time source was removed.
The achievable error bound was 1usec: the limit of our clock’s resolution and, more importantly, exactly the
same as the result with NTP and an active external time standard. This result is important because it shows
that extremely low-energy and low-error time synchronization is possible: after an initial frequency-training
period, nodes might be able to keep their radios off for days and still instantly acquire a timebase within
1usec when an event of interest arrives. That result is made possible by the multi-modal synchronization;
the frequency correction provided by free-running NTP is not good enough to keep clocks precisely in phase
over time due to accumulated error. (In the free-running NTP experiment, the accuracy of the timestamps
when not normalized by the sync pulse was only in the tens of milliseconds.)

All of these results, while encouraging, do come with a number of caveats. Our experiments results
were performed under idealized laboratory conditions, using (equal-length) cables to directly connect the
sender to the receivers. Real world conditions will require wireless links that are likely far more complex
with more opportunities for variable delay. In addition, the relatively constant ambient temperature reduced
the oscillators’ frequency drift over time. A real sensor network deployed outdoors might not be able let
NTP free-run without an external time source for as long as we did in our experiment.

7. Work Plan

Although the experiment we have described is encouraging, it is only a preliminary study. There are a
large number of possible future directions for research; we have focused only on some that seem the most
promising and interesting.

Our planned work for the future falls into three main categories. First, we wish to develop and charac-
terize new time synchronization methods. We also plan to characterize traditional synchronization methods
for the purpose of comparison. Second, we would like to implement a working system as proof-of-concept.
Specifically, we will develop a testbed that can track the motion of objects through a field of sensors; this ap-
plication will demonstrate two different time synchronization in different contexts. Finally, we will explore
methods that might allow a running system to adapt to new applications and conditions by automatically
selecting the time synchronization methods that are most appropriate.

7.1. Development and characterization of time sync methods

An important goal of our work is to provide a palette of time sync methods to applications that covers a
good portion of the parameter space we described in Section 2. Because it is impossible for any single
synchronization method to appropriate in all situations, sensors should have multiple methods available. If
a node can dynamically trade error for energy, or scope for convergence time, it can avoid “paying” for
something that it doesn’t need. Ideally, the algorithms should also be tunable—allowing finer control over
an algorithm than simply turning it on or off.

Towards this goal, we plan to continue the development of sync methods and their characterization
along the axes we described earlier. In addition, we plan to more fully characterize the “traditional” time
sync methods for comparison. Our specific plans for further development and experiments follows.

e \We plan a re-implementation of our post-facto pulse synchronization experiment on hardware that is
more akin to hardware that will be found in sensor networks: slower, lower-power nodes that have
wireless radio links. While using PCs with wired stimuli and event delivery did provide an important
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proof-of-concept and encouraging results, we wish to investigate the effects on error of factors such as
slower clock speeds, variable latency of radios, and nondeterminism introduced by radio propagation
anomalies. We plan to do these tests using the wireless sensor network testbed in place as part of the
related SCADDS project [EGHK99, CEE101].

There are many interesting dimensions of pulse synchronization that we did not explore with our
initial experiment. For example, what are the effects on error of scaling up the number of nodes,
the duty cycle of the nodes, or changes in the ambient temperature? Many of these questions can be
answered with a larger, truly untethered testbed.

An even a more basic question that we would like to answer is: what is the best modality for a syn-
chronization pulse? We should not assume that a radio signal is the best (e.g., most deterministically
detected) mode. We plan a simple experiment to test the detection determinism of other modes not
yet examined, such as using a strobe light to trigger remote photodiodes. By using a multichannel
oscilloscope to compare the dispersion in triggering times of various modes (e.g., the strobe light,
radios with various MAC layers, and wired stimuli), we can get an interesting picture of how the
detection modalities themselves contribute to the overall system’s error budget.

Additional (related) time-synchronization methods will be developed based on the existing primitives.
Specifically, we wish to investigate synchronization pulse chaining. Pulse chaining is an extension
to the pulse sync method we described earlier. Standard pulse synchronization is only effective for
creating a synchronized timebase within the transmit radius of a single beacon. However, if certain
receivers “relay” the pulse—retransmitting it to a new set of receivers outside the range of the original
beacon—the scope of the timebase can be expanded. The pulse may be relayed many times to make
the scope of the timebase larger and larger.

Naturally, each link in this synchronization chain will accumulate error. Our plan is to understand
how this error accumulates as the size of the synchronized area increases. This “maximum error vs.
distance” is analogous to the “maximum error vs. time” experiment we described in Section 6.

We will characterize some existing methods for acquiring time along the same axes (such as scope,
maximum error, lifetime, etc.) that we have used to evaluate our own time sync methods. This will
allow a for a more informed comparison of our methods with related work in the area. Our exper-
iment’s comparison of pulse synchronization with NTP is one example of this kind of comparison;
we would like to make similar statements with respect to systems such as GPS, WWV/WWVB, and
GPS-via-CDMA.

7.2. Testbed implementation as proof-of-concept

Although experiments that characterize our methods are important, we also think it is important to imple-
ment an actual application using these methods as a proof-of-concept. Therefore, the second major portion
of our planned work is the implementation of a testbed that demonstrates our time sync algorithms in the
context of a sensing application.

Our proposed testbed application is tracking of cooperative objects through a sensor field. A “cooper-

ative” object is one that wants to be tracked; that is, the object has been augmented in a way that makes it
easier to localize. The goal is to build sensor network that will report to a user the location and speed of
the cooperative object over time. The sensor field will be truly distributed: that is, its geographic span will
prevent any single node from broadcasting a radio message globally.
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The application we propose will build on Girod’s prototype acoustic rangefinder [Gir00]. His rangefinder
uses digital signal processing techniques to accurately determine the time of arrival of a specially formed
sound. (The sound is a “chirp” that is modulated by a sender to make it more easily detected by the receiver.)
If the sender and receiver are synchronized in time, Girod’s technique allows accurate determination of the
time of flight of sound between two points. This, in turn, leads to an accurate range estimate between them.

In cooperation with Girod, we plan to use post-facto time synchronization to facilitate measurement of
the time of flight of sound from an audio source to a set of receivers—not just a single receiver—allowing
them to trilaterate. At any given instant, this technique will report instantaneous position in a coordinate
system defined by the sensors®. As the object moves through the sensor field, many such localization
measurements can be taken and integrated to form an estimate of velocity.

This experiment demonstrates two aspects of our time synchronization services:

e Post-facto synchronization. The post-facto sync we have developed (as described earlier in this paper)
allows a localized set of receivers to create an ephemeral synchronization with a maximum error of
1usec. This is exactly what the trilateration/localization service needs.

e Pulse chaining. In order to integrate a series of these localization measurements over time, the sensors
must be able to share a timebase that is wider in scope and longer in lifetime. However, since the
object will be moving relatively slowly, the maximum error constraint is considerably weaker (e.g.,
on the order of 10°s or even 100’s of milliseconds). Pulse chaining makes exactly this tradeoff:
chaining together a series of local, ephemeral timebases into a larger-scope and longer-lasting one, at
the expense of accumulated error.

We believe this experiment to be an effective demonstration on several fronts:
e Even an single application can often have a variety of time-sync needs.

e Meeting these disparate needs by using a variety of time-sync methods results in a more energy-
efficient and less expensive system than a single sync method that would be forced to meet the union
of all requirements.

e Sensor nodes can sometimes achieve advanced time-sync without the need for additional specialized
hardware.

7.3. Exploration of methods for tuning and automatic modality selection

There are additional future directions that we wish to pursue, though time may not permit a complete
exploration of these details in the context of an actual implementation. We plan to examine some of these
issues in the context of simulation or modeling instead. Specifically:

e Our vision is that nodes can save energy by selecting a time synchronization method that is both
necessary and sufficient for its needs. Ideally, those methods should also be tunable—allowing finer
control over an algorithm than simply turning it on or off. Tunability will allow applications to tailor
a sync method, making the gap between what’s needed and what’s provided even smaller. Through

*In this experiment, we assume that each sensor is preprogrammed with its position in some global coordinate system. In
the context of a testbed meant to demonstrate time synchronization, this assumption is a reasonable one. In parallel, Girod is
developing techniques that allow a distributed federation of sensors to dynamically create a self-consistent coordinate system.
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some simple experimentation or simulation, we would like to study the gains that might be realized
through tuning.

One such “tuning knob” that might be possible is in selecting the number of nodes that participate
in a federation of synchronized nodes. Many time-standards (e.g., UTC(USNO), the U.S. Naval
Observatory’s realization of UTC), use a large ensemble of clocks and dynamically choose the best in
order to improve precision. Will adding additional beacons make post-facto synchronization better,
at the expense of more energy expended by the additional nodes that are participating? If so, this is
another interesting energy-error tradeoff.

e Until now, we have assumed that a palette of sync methods are available to applications, and the exact
method used is selected by the system designer at design-time. Is it possible for the system to adapt
by dynamically selecting the best algorithm while it’s running? Is it possible for an application to
automatically turn the tuning knobs described earlier?

8. Conclusions

Time synchronization is a critical piece of infrastructure for any distributed system. Distributed, wireless
sensor networks make heavy use of synchronized time, but often have unique requirements in the scope,
lifetime, and maximum error of the synchronization achieved, as well as the time and energy required to
achieve it. Existing time synchronization methods need to be extended to meet these new needs.

We have presented an implementation of our own sensor network time synchronization scheme, post-
facto synchronization. This method combines the oscillator frequency discipline provided by NTP with
an instantaneous phase correction provided by a simple synchronization signal sent by a beacon. Our
experiments have shown timing error for a group of 10 nodes to be bounded near the limit of our clock
resolution of 1usec.

An important additional result is that the same error bound was achieved even when NTP no longer had
an active external time or frequency standard, after an initialization period when it was allowed to estimate
the local oscillator’s frequency error. This is critical for sensor networks where limited energy reserves and
the high energy cost of operating a wireless radio make standard NTP unsuitable for long-lived, low-power
operation.

Although our current results are a preliminary laboratory study, we believe that post-facto synchro-
nization over wireless radios will be able to support the same instantaneous creation of a short-lived but
low-error synchronized timebase ever after a long period of radio silence. We propose ongoing research
where we can

e Move our experiment from the lab to real sensor network nodes, and develop additional methods;

Characterize our methods, and traditional methods, according to appropriate metrics for comparison;

Prove these methods are applicable to real systems by building an application testbed; and

Explore additional issues such as tuning and voting through simulation and modeling.
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