The CircleMUD Administrator’s Manual

Jeremy Elson
<jelson@circlemud.org>

December 12, 2001

Abstract

This document describes how to configure CircleMUD and how to compile it for the
first time. It also discusses how to run the server including documentation of command-
line options, a description of system logs and how to use them, and a description
of daily and long-term maintenance required by the MUD. The intended audience is
implementors new to CircleMUD or MUD administration in general.

More information about CircleMUD, including up-to-date versions of this documen-
tation in ASCII and Postscript, can be found at the CircleMUD Home Page <http://
www.circlemud.org/> or FTP site <ftp://ftp.circlemud.org/pub/CircleMUD/>.

Contents

1 Welcome to CircleMUD!

1.3 So, you’re sure you want to run your own MUD? . . . .. .. ... ... ..

1.4 Giving Credit Where CreditisDue . . . . . . .. .. ... ... ... ...

2 Getting Started
2.1 Section Requirements . . . . . . ... ... ... o

2.2 Downloading and Unpacking the Source . . . . . . ... ... ... ...,



2.3 Configuring CircleMUD

2.4 Compiling CircleMUD .

Running CircleMUD
3.1 Execution and autorun

3.2 Command-Line Options

3.3 Creating an Implementor Character . . . . .. ... ... ... .......

Customizing CircleMUD

4.1 config.c . ... .. ..
4.2 Text Files . . . ... ..
4.3 World Files . . . .. ..

System Logs

5.1 Player Information . . .
5.2 Usage Information . . .
5.3 Errors ... ... .. ..

MUD Maintenance
6.1 Technical Maintenance .

6.2 Diplomatic Maintenance

Final Thoughts

10

11

11

11

12

12

12

13

14

15

15

15

16



1 Welcome to CircleMUD!

1.1 Background and Introduction

CircleMUD is a derivative of DikuMud, the Multi-User Dungeon developed at DIKU, the
Department of Computer Science at the University of Copenhagen. The original Cir-
cleMUD, version 1.0, was run by Jeremy Elson at the Johns Hopkins University’s Depart-
ment of Computer Science with moderate popularity from January until September of 1992.
The version 1.0 code, which was never released to the public, was archived and remained
inactive for several months after the death of the original CircleMUD. In the summer of
1993, it was taken out of storage and cleaned up with the intention of making it a public
code base that anyone could freely download and use to start a MUD. Version 2.0, the first
publically available version, was released in June of 1993. Circle has been maintained as a
public code base ever since then, although we do not actually run a MUD of our own. The
original CircleMUD has not run since it went down in 1992, nor will it ever run again.

Hundreds of carefully spent hours have gone into the development of Circle, but it is
not a finished product — it is only a beginning. It has only a small number of spells and
skills, a small world with relatively few areas, and only the 4 original DikuMud classes.
From a gamer’s point of view, it pales in comparison to other MUDs which have dozens of
spells spread over a dozen classes, a rich palette of skills, and thousands upon thousands
rooms, mobiles, and objects.

Yet from a programmer’s point of view, Circle is very highly developed. While the
look and feel of the original DikuMud has been maintained, most of the underlying code
and many of the structures have been optimized, reworked, or completely redesigned to
be efficient, compact, and easily changeable and extensible. Dozens of features which have
become standard in the MUDding world over the past few years, although they were not
part of the original DikuMud release, were added to Circle as well.

The result is that CircleMUD is a launching pad for your own MUD ideas. Our hope
in releasing it is that it will free potential MUD implementors from having to worry about
dealing with bug-ridden code or wasting time reinventing the wheel by re-coding standard
MUD features, allowing them to devote more effort towards creatively shaping Circle into
their own unique vision of how a MUD should look and feel. The reason why Circle has so
few specialized spells, skills, classes, and races is to encourage implementors just like you to
create your own unique system instead of just another stock MUD that everyone has seen
before.

So, it is with this message that we inflict our code on the world: don’t just put another
generic MUD on the Net — give us something new and exciting, and have as much fun as
possible in the process!



1.2 Are you a Player or an Administrator?

If you’re playing a game like Zork or Doom, you’re both the administrator and the player of
the game: you're the one who has to download the software and get it running, and you’re
also the one who gets to play. MUDding isn’t that way at all, because there’s usually a
very strong division between people who play MUDs and people who administer MUDs.
If you’ve never played a MUD before, jumping right in and trying to run one of your own
will probably just get you hopelessly confused. Instead of trying to compile and run the
CircleMUD package yourself (which is presumably what you're trying to do if you’re reading
this document), you should play someone else’s copy of CircleMUD. There is a partial list
of sites <http://www.circlemud.org/sites.html> using CircleMUD on the CircleMUD
web server.

1.3 So, you’re sure you want to run your own MUD?

If you're already an old hand at playing MUDs and you’ve decided you want to start one
of your own, here is our advice: take a vailum, lie down, and hide in a dark closet until the
desire goes away. Just playing MUDs is masochistic enough, isn’t it? Or are you trying
to shave that extra point off your GPA, jump down that one last notch on your next job
evaluation, or get rid of that pesky Significant Other for good? If you think silly distractions
like having friends and seeing daylight are preventing you from realizing your full potential
in the MUD world, being a MUD Administrator is the job for you.

Don’t get me wrong: running a production MUD can be great fun. It can also be over-
burdened by politics and plagued by spiteful players devoted to making your life difficult,
and otherwise be a highly frustrating endeavour. That’s why I don’t do it any more.

1.4 Giving Credit Where Credit is Due

If T haven’t scared you away yet, and you’re still sure you want to use CircleMUD, please
stop for a moment and look at the CircleMUD license in the file 1icense.doc. It outlines
the terms under which you must use CircleMUD.

The license is simple. It boils down to the message, “Don’t rip off other people’s work.”
Unfortunately, this simple message ended up becoming somewhat long-winded because I
am trying to prevent people from abusing DikuMud in the future as they have in the past.

Also, out of courtesy if nothing else, please keep the credits file intact. You can add
your own credits on top of the existing file, but I'd appreciate it if you would not simply
remove it and all references to the word “Circle” everywhere in the MUD. How would you
feel if someone took your code and then took credit for it?



USE OF THIS SOFTWARE IN ANY CAPACITY IMPLIES THAT YOU HAVE
READ, UNDERSTOOD, AND AGREED TO ABIDE BY THE TERMS AND CONDI-
TIONS SET DOWN BY THE CIRCLEMUD LICENSE.

2 Getting Started

2.1 Section Requirements

CircleMUD 3.0 was originally written as UNIX software and will automatically configure
itself (using GNU autoconf) and compile under most versions of UNIX, both BSD and
System V derivatives. With minor adjustments (documented below), the same source
should compile under Microsoft Windows 95 and NT, IBM OS/2, and the Amiga. Users
have also reported getting Circle to compile and run under MkLinux, the port of Linux to
the Power Macintosh. CircleMUD will not work under DOS, Windows 3.x, Windows for
Workgroups 3.x, or Mac System 7.

Specifically, the following variants of UNIX have been tested and are known to work
with Circle:

e SunOS 4.1.4

e Solaris 2.3 and above
o Irix 5.2, 6.2

e AIX 3.2

e Ultrix 4.x

e HP-UX 9.x

e Linux 1.x, 2.x

e BSD/OS 2.1

e Mac OS X (10.0 and above)

If your system is not listed, don’t despair; because of the autoconf program, Circle will
compile under most versions of UNIX on its own. A large effort was made to make Circle
v3.0 more portable by converting many of its system calls over to POSIX compliance.
Converting Circle to POSIX vastly helps portability on modern operating systems, most
of which are POSIX-compliant. Unfortunately, on some older systems that are not (such
as NextSTEP 2.x), it may be more difficult to compile 3.0 than it was to compile earlier
versions of the code. (POSIX stands for Portable Operating System Interface for UNIX



and is an effort to standardize the way UNIX programs talk to the operating system.
For more information, see Stevens’ excellent book, Advanced Programming in the UNIX
Environment.)

For a small, private MUD, or a MUD used only for testing and development, about
10 MB of disk space and 16 MB of memory should be sufficient. For large, public MUDs
with a large player base, 30 to 50MB of disk space and at least 32 MB of memory are
recommended. Free memory is much more important than CPU speed; CircleMUD uses
virtually no CPU time.

Historically, CircleMUD has always been developed under different variants of UNIX.
The original CircleMUD was run on a DECstation 3100 running Ultrix 4.0, which remained
Circle’s development platform until v2.0. Starting with v2.0, Circle was developed under
various versions of Linux and Solaris over the years ranging from Linux 0.99.11 through the
current Linux 2.2.x and including Solaris x86 5.6.

2.2 Downloading and Unpacking the Source

The first step in setting up CircleMUD is to make sure you have the most recent version
of the source; if you downloaded CircleMUD from an unofficial mirror site, it could be out
of date. You can always find the most recent version of the source at CircleMUD’s official
FTP site <ftp://ftp.circlemud.org/pub/CircleMUD/>

The archive is offered several formats: one which ends in .tar.gz, one which ends
in .zip and one which ends in .1lha. The files have the same contents but have been
compressed using different programs. You should ensure that you get a copy that you can
unpack on your operating system.

Next, unpack the archive. If you have the .tar.gz version, unpack it using gzip (GNU
unzip) and the tar archiver. If you don’t already have them, both of these utilities can
be downloaded from the GNU FTP site <ftp://ftp.gnu.org/pub/gnu/>. To unpack the
archive on a UNIX system, type:

gzip -dc circle30xxx.tar.gz | tar xvf -

If you downloaded the .zip or .lha version, make sure to use an UNZIP program
capable of handling long filenames and which preserves the original directory structure
of the archive (PKUNZIP 2.04 does not do either of these things by default.) The best
unzip program is probably Info-Zip’s unzip program <http://www.info-zip.org/>; it is
compatible with all UNIX variants, Windows, OS/2, the Amiga, and pretty much every
other computer on the planet. If you have Windows 95/98 or NT, another good choice is
WinZip <http://www.winzip.com/>.



For the next few sections, please note that the Cygnus Tools (Cygwin) are available for
the Windows platform, which allow users to use Unix tools on that operating system.

2.3 Configuring CircleMUD

Note: This section applies only to UNIX users. If you’re using Windows, OS/2,
or the Amiga, read README.WIN, README.(0S2 or README.AMIGA instead.

Circle must be configured using the configure program which attempts to guess correct
values for various system-dependent variables used during compilation. It uses those values
to create Makefiles and a header file called conf.h.

From Circle’s root directory, simply type

./configure

If you're using csh, it may not execute “configure” properly, giving you an error message
like “Permission denied”. If this occurs, try “sh ./configure” instead.

configure can take several minutes to run if you're using a slow computer. It will print
out various status messages while it works, telling you what characteristics of your computer
it has found. It should create two Makefiles (src/Makefile and src/util/Makefile) and
one header file (src/conf .h).

You should only need to run configure once — right after you unpack CircleMUD from
its archive. You will probably compile the source dozens of times as you add new features,
but configure only needs to be run before the first time you compile. Please note that
there is one exception to this rule: if you move your MUD to a different computer, you
must run configure again before you can recompile the source code. To rerun configure
after moving the source, make sure to delete the file called config.cache and then run
configure again.

2.4 Compiling CircleMUD

Note: This section applies only to UNIX or Cygwin users. If you’re using
Windows, OS/2, or the Amiga, read README.WIN, README.0S2, or README.AMIGA
instead.

The src directory contains the source code for the main MUD server; src/util has
the source for a dozen or so MUD maintenance utilities. There are two Makefiles, one in
each source directory, but all compiling is normally performed from the src directory only.



4

To compile the only CircleMUD server itself, type “make”. Use “make utils” to compile
the utilities, or “make all” to compile both the server and the utilities. It is also possible
to compile individual utilities from the src/util directory: from src/util, type “make
[utility-name]”. All compiled binaries go to the bin directory.

The stock (unmodified) CircleMUD code should compile with no warnings or errors.

Despite my best efforts there’s a chance that you’ll have problems compiling Circle
if you're using some version of UNIX that I’ve never seen before. It’s impossible to give
general advice on how to port software, except to say that you should ask a friend who
knows a lot about both UNIX and C to help you. Also, if you have problems, you should
definitely look at the CircleMUD FAQ (Frequently Asked Questions list with Answers),
which you’ll find in Circle’s home directory.

If you do port Circle to some other platform successfully, please share your hard work
with others by sending a description of what you had to do to get Circle to compile on your
system to <cdev@circlemud.org>. Be sure to include the specific name of your operating
system and hardware. Full details on porting to a new system can be found in the Porting
CircleMUD document.

The Makefile directs all compiled programs to the /bin directory. Although not rec-
ommended, you may want to put Circle’s /bin directory in your $PATH. The reason that
this is not recommended is that most of the resources are referenced using relative paths,
and thus require that you run the programs from the base CircleMUD directory.

3 Running CircleMUD

Note: This section applies only to UNIX or Cygwin users. If you’re using
Windows, OS/2, or the Amiga, read README.WIN, README.0S2, or README.AMIGA
instead.

3.1 Execution and autorun

1. type ’autorun &’
2. Wait a few moments for the server to boot.

3. type: telnet localhost 4000

Circle should always be run from circle’s “root” directory, not the /bin directory. You
can run it manually by typing bin/circle (useful for testing and debugging). For running



the game “for real,” it is better to use the autorun shell script provided in Circle’s root
directory.

Autorun lets Circle run itself for long periods of time. It continuously runs the game
as well as removing old system logs, moving newer system logs to the log directory, and
saving certain log entries to permanent files.

Autorun can be controlled by creating files with certain names. You can use the touch’
command to create a file, and, of course, the 'rm’ command to remove a file. If a file called
".fastboot’ exists, the CircleMUD will reboot immediately if it crashes or is shut down
instead of waiting 40 seconds as it normally does. A file called '.killscript’ will cause
the script to terminate itself; i.e. if you want to bring the game down. If you want to
temporarily prevent the MUD from rebooting, create a file called “pause”; the script will
go into a wait loop until 'pause’ is removed.

Although you can create these files manually, theshutdown command from within the
MUD has several options which will create these files for you. See the shutdown help
entry in wizhelp.doc for more information.

3.2 Command-Line Options

Circle recognizes a number of command-line options. You can use them by actually speci-
fying them on the command-line when running Circle manually or, by adding them to the
FLAGS variable in your autorun script to use the options automatically every time you run
the MUD with autorun.

The syntax is:

circle [-m] [-q] [-r] [-s] [-d <path>] [port]

-m Mini-Mud Mode. Mini-mud will be one of your most powerful debugging tools; it causes
Circle to boot with an abridged world, cutting the boot time down to several seconds.
It is useful for testing features which are not world-related (i.e, new commands or
spells).
CircleMUD uses split world files (in the lib/world hierarchy); each directory (i.e. wld,
obj, mob, shp, and zon) has a file called ”index” which specifies which files should be
loaded at boot-time. The file "index.mini” specifies which parts of the world should
be loaded with the -m option.

-q Quick Boot. Prevents checking of timed out object files. Every time Circle boots, it
checks every object file to see if it has timed out; if so, it is deleted. This is done
primarily to save disk space. If time is more important to you than space, use the -q
option. -q is automatically activated when you use -m.



-r Restricted Game. Allows you to decide at run-time whether or not the game will allow
new characters to be created. Using -r is equivalent to typing ”"wizlock 1”7 (see
wizhelp.doc for more information).

-s Special Routines Disabled. Allows you to suppress the assigning and calling of all mo-
bile, object, and world special procedures. Historically used as a debugging tool in
conjunction with the -d option (see below), but now obsolete because Circle checks
to make sure entities exist before attempting to assign a special procedure to them.

-d Data Directory. Useful as a debugging and development tool, if you want to keep one or
more sets of game data in addition to the standard set, and choose which set is to be
used at run-time. For example, you may wish to make a copy of the entire world in a
separate directory, so that you can test additions to the world files without subjecting
players to unnecessary hazards. The default data directory is '1ib’. Any core dumps
(may they never happen to you!) will take place in the selected data directory.

port Port Selection. Allows you to choose on which port the game is to listen for connec-
tions. The default port is 4000, which is historically the port used by most DikuMuds.
You can change the default in config.c and the PORT= line of the autorun script.
(The PORT= line of config.c simply passes the value as a command-line parameter
to Circle.) The port specified on the command line or by the autorun script will take
precedence over the port specified in config.c.

3.3 Creating an Implementor Character

The first character to log in to the MUD will be made the maximum (Implementor) level. If
you log in and aren’t made an implementor, then the playerfile probably is not empty — take
the MUD down, delete the playerfile (1ib/etc/players), and start the MUD again. You
should fix your stats using the RESTORE command when you first create the character
(i.e. type "RESTORE <your-name>".

Once you are logged in as an implementor, type WIZHELP for a list of privileged
commands. Documentation of those commands is contained in the file wizhelp.doc.
wizhelp.doc is in the standard help file format, so you can simply add it to the help
index file if you want online help available for wizard commands. (wizhelp.doc is not
contained in the online help by default as a security precaution.)

To create additional wizard characters, log them in normally as level 1. Then, advance

them using your implementor character, using the ADVANCE command. See wizhelp.doc
for more information.

10



4 Customizing CircleMUD

Once you get over the initial euphoria of having your own MUD compile and run successfully
for the first time, you should be aware of some of the files which control how Circle looks
and feels so that you can configure it for your personal taste.

4.1 config.c

The most useful file for configuration is the config.c source file. It has dozens of options
useful for customizing your MUD. Before you open your MUD to players, you should
carefully read through config.c from beginning to end, checking what options are available
as well as making sure they’re all set the way you want them. Remember, you have to
recompile and rerun the MUD before any changes you make to config.c take effect, of
course.

4.2 Text Files

The place where most of your day-to-day changes will be is in the 1ib/text directory, which
contains all of the text files read by players. The most visible file is “motd”, (Message Of
The Day), which is the message that mortals seen (though not necessarily read!) when they
log in. Similarly, the “imotd” (Immortal MOTD) is seen by immortals when they log in.
Other interesting files are “news” (for the NEWS command), “help” (for the HELP command
with no arguments), “help_table” (for HELP with an argument), and others.

One file is particularly important: “policy”. Despite what anyone tells you, and your
best efforts to the contrary, your MUD will have political problems. If anyone tells you that
you can run a MUD without politics, they’re wrong. If you tell your players that you're
going to run a revolutionary MUD that doesn’t have any politics, you're lying. Every
MUD has political problems sooner or later. Unfortunately, this usually occurs “sooner”.
There are various ways to make political problems easier to handle, but the best way is to
decide on some ground rules from the very beginning, and then set those decisions down
in writing. That’s what the “policy” file is for. You probably know what kind of political
problems MUDs have (you are not trying to run a MUD without ever having played one,
are you!?) — stuff like playerkilling, thieving, kill stealing, client use, multi-char playing,
reimbursements, etc. Decide on your policies early and make sure your characters know
what those policies are.

It is also important to write down a set of rules dictating what immortals are allowed
to do and not allowed to do. That’s what the “handbook” (Immortal Handbook) is for.
Immortals will always try to bend you as far as they can, so it’s important for you to
decide on answers to questions before those questions come up. Can immortals assist

11



players? What about giving a single ’cure light’ for a player about to die? Can immortals
kill mobiles for their own enjoyment? Can they kill players for the same reason? Are
they allowed to make policy? Break policy? Moderate disputes? Turn over each others’
decisions?

4.3 World Files

The root of the area hierarchy is 1ib/world/. lib/world/ has 5 subdirectories: wld,
mob, obj, shp, and zon, which is where the world, mobile, object, shop, and zone files go,
respectively. Each directory has a set of world files in it with the appropriate extension (i.e.
the obj subdir will have a bunch of files ending with “.obj”, such as 30.0bj, 31.0bj, etc.)
plus two special files called “index” and “index.mini”. “index” is a list of which world
files are to be loaded by Circle. This makes the job of adding new areas easier — just add
the new area files to your area directory, and then add the name of the new file to “index”.
“index.mini” controls which (smaller) set of world files should be loaded in the debugging
mode (Mini-Mud Mode, explained below.)

5 System Logs

CircleMUD writes a wide variety of information to standard output and standard error.
If you're using the autorun script, the boot messages are put into a file called “syslog”.
During Circle’s boot sequence, the system log keeps a record of everything the MUD is
doing to initialize itself; this can be useful to determine what the problem is if the MUD
dies while it is booting. Once the game is up and running, the syslog contains player
information, recording when players connect, disconnect, rent, unrent, quit, die, hit death
traps, etc. The game also records status information about itself, falling generally into two
categories: usage information and errors.

5.1 Player Information

The player information recorded by Circle’s system logs will serve you very well as your
players start to make wild claims about strange bugs resulting in them losing equipment or
points. Many mudders prey on the insecurities of a new mud administrator who is terrified
that his or her MUD is riddled with bugs and will do anything to satisfy grumpy players —
don’t let yourself fall into that trap! CircleMUD is bound to contain bugs, but most of the
core systems have been well tested, so you should take claims such as “I magically lost all
my stuff!” with a grain of salt and check your system logs.

If a player ever asks you for reimbursement of equipment, money, gold, experience

12



points (XP), or whatever, your gut reaction should always be to check the logs first.

As a sidebar, let me point out that the value of system logs is twofold: 1) they
actually provide you with valuable information, and 2) they make your players
paranoid. When I first started mudding and I heard about this mysterious
“system log”, it made me incredibly paranoid. Now that I’ve done a good deal
of MUD administration, I've seen the same paranoia in many other players.

That paranoia is a very good thing. The system logs become an abstract and
shapeless but omnipresent force on the MUD. Players hear about “the System
Log” and then get paranoid that everything they do is being recorded, so they
tend to behave, lest the evil System Log betray their wrongdoings to the Gods.

For this reason, when you go to check your logs, it’s a good idea to say something
like “Hold on... let me go check the system logs, OK?” because it reinforces the
syslog’s presence in the collective psyche of your players.

Back to the point. When someone claims that they’ve been wronged by the evil system,
always check the logs. The logs give you power to say things like “What do you mean your
items disappeared in rent? It says right here in the logs ‘Rasmussen has quit the game.’
You did not rent at all, you just quit!”

To diffuse disputes such as, “The game dumped my stuff, but I had enough money!!”
or “I logged in and my stuff was gone, there must be a bug!!”, two types of log entries are
written. First, every time a character rents, the log records the character’s per diem rent
rate as well as the total amount of money on hand and in the bank. Second, the log records
makes a record of all characters’ equipment dumped due to insufficient funds.

Remember, rent is specified as a daily rate but is amortized on a per-second basis! In
other words, if you rent at the rate of 100 coins per day and come back 36 hours later,
you’ll be charged 150 coins.

The autorun script saves 6 levels of raw system logs. In addition, it greps the logs for
certain pieces of extra-juicy information to save indefinitely.

The system logs are your friends. Love them.

5.2 Usage Information

Every 5 minutes, the game counts how many people are playing and records that information
in the system log. Optionally, if you define RUSAGE in comm.c, it will also record system
resource information such as CPU time and memory used. The usage information currently
logged by Circle is, as you can see, somewhat sparse; local MUD admins are encouraged to
add to this code as is appropriate for their particular site.

13



Usage information isn’t critical, but it is interesting to look at the usage patterns to
determine when your peak playing hours are. If you're good at using ‘cut’ and other Unix
utilities, you can even dazzle your friends by graphing your MUD’s system usage.

Note: friends not included with the CircleMUD distribution.

5.3 Errors

Just as your first gut instinct should be to look at the logs if a player starts begging you for
something, your first gut instinct in the event of a crash or unexpected shutdown should
also be to look at the system logs.

A Unix utility called ‘tail’ is used to look at the last few lines of a text file; it is very
useful for looking at the last entries in the system log to see the last thing that happened
before the shutdown. Often, Circle will report an error in the logs just before it crashes.
This method is particularly useful if the MUD crashes during its boot sequence, because
the logging during boot is intensive.

If Circle shuts down unexpectedly and there is no core dump in the /1ib directory,
the game probably detected an internal error and killed itself. Such shutdowns are always
preceded by entries in the system log describing the error.

If there is no error message at the end of the log, then there probably IS a core dump,
so you can use ‘dbx’, ‘gdb’, etc. to examine the core dump and determine the reason for
the crash. The file hacker.doc, generously provided by Furey of MERC Industries, offers
useful insight into the art and science of debugging — you’d be well advised to give it a
look-see.

Circle sometimes encounters a serious but non-fatal error; in this case, the error will
be written to the system log with the prefix SYSERR, but the MUD will not shut itself
down. You should always be aware of any SYSERRs which occur — they are often useful
for foreseeing imminent danger or averting problems before they become critical. If a
SYSERR does occur, try to determine if a change you’ve made recently has caused it.
Ignoring SYSERRs is like ignoring compiler warnings: you can be tempted to ignore them
because the game keeps going even if they exist, but you can easily get yourself into trouble
by not listening. The autorun script saves all SYSERRs to the file log/errors.

14



6 MUD Maintenance

6.1 Technical Maintenance

Once you get the MUD up and running, you will surely want to modify it — adding new
areas, new features, new code, and new ideas, however these topics are beyond the scope
of this document. See coding.doc, areas.doc, and other creation documents for more
information about how to customize your MUD once you get it up and running. This
section simply focuses on some of the simple maintenance that’ll be necessary to keep your
MUD running smoothly. Make sure not to get so caught up in being a God that you forgot
you're also supposed to be acting as a software engineer!

First, you should look at the log/errors file regularly to make sure there are no recurring
problems, particularly problems that may have been caused by code you’ve added. If the
MUD crashes, it will usually generate what is called a “core dump” — a big file called “core”
in your lib directory, created by the operating system to record the state the game was in
the moment before it crashed. You should look at the core dump using a debugger such as
“gdb” or “dbx” to determine why the MUD crashed. See the file “hacker.doc” for more
information about debugging.

You probably will want to clean out the playerfile on a regular basis to remove dead-
weight characters (i.e. people who log in and look around for 10 minutes, and then never
come back). You can decide how often to purge the playerfile — every day if disk space is
tight, or every month if it isn’t. The purgeplay utility program included in the src/util
directory removes deadweight players. Make sure to run the “purgeobjs” script (in the
lib/plrobjs directory) after you purge the playerfile. purgeobjs removes the object files
of players who no longer exist in the playerfile.

The ’automaint’ script in the main circle directory will automatically purge the player-

file and player objects for you. DO NOT RUN THIS SCRIPT WHILE THE MUD IS
RUNNING! Doing so will make your life (more) difficult.

6.2 Diplomatic Maintenance

Okay, so now you have your wonderful CircleMUD up and running smoothly and all is right
with the world. Right?

Wrong.
Well, technically, right. Circle requires very little day-to-day attention in order to keep

the program itself running smoothly. But the MUD itself is just a series of instructions
running on a computer, processing data. Never lose sight of the fact that there will be

15



dozens, hundreds, or maybe even thousands of people connecting to your MUD — and they
are not programs. They are people!

From the technical side, there are relatively few things you have to do to keep the game
running. But you cannot just dump a MUD on the Internet and then ignore it! Spend
time on your MUD. Try to keep up with the boards, and make an effort to respond to the
complaints, ideas, and suggestions posted there. Take a look at the ‘bug’, ‘typo’, and ‘idea’
files from time to time — and maybe even respond to some of the ideas using Mudmail. Try
to respond to Mudmail you receive from players in a timely manner. Make sure that your
‘news’, ‘policy’ and other text files are up-to-date and suit the political climate on your
MUD.

If you cannot or just do not want to deal with the player politics, make sure that you
choose someone who can and will, and make them responsible for dealing with it. If no one
does it, your MUD will stagnate and die.

7 Final Thoughts

Try to remember that running a MUD should be fun. It can sometimes be easy to lose sight
of the ultimate goal of personal enjoyment that MUDs are supposed to provide, particularly
when MUDs start to get crushed under the weight of their own politics or the egos of the
administrators. If you find that your MUD is more of a source of frustration than enjoyment,
don’t be afraid to close it.

Good luck with your MUD! Always feel free to write to us and let us know what you
think of the MUD, and the interesting things you’ve done with it. We cannot promise a
timely response, but we love hearing from people who are using our code.

For further information and updates, you can be certain to check out the CircleMUD
homepages <http://www.circlemud.org/>, the associated pages of Ceramic Mouse <http:
//developer.circlemud.org/>, and the CircleMUD Mailing List <http://www.circlemud.
org/maillist/>.

16



