
PARAPIN:

A Parallel Port Pin Programming Library for Linux

Jeremy Elson

jelson@circlemud.org

Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292 USA

28 March 2000

This work was supported by DARPA under grant No. DABT63-99-1-0011 as part of the SCADDS
project, and was also made possible in part due to support from Cisco Systems.

Contents

1 Introduction 1

2 Parallel Port Specifications 1

3 Parapin Basics 2

4 Compiling and Linking 4
4.1 The C Library Version . 4
4.2 The Kernel Module Version . 4

5 Initialization and Shutdown 5
5.1 The C Library Version . 5
5.2 The Kernel Module Version . 5

6 Configuring Pins as Inputs or Outputs 6

7 Setting Output Pin States 6

8 Polling Input Pins 7

9 Interrupt (IRQ) Handling 8

10 Examples 9

11 Limitations and Future Work 9

i

1 Introduction

parapin makes it easy to write C code under Linux that controls individual pins on a PC parallel port.
This kind of control is very useful for electronics projects that use the PC’s parallel port as a generic
digital I/O interface. Parapin goes to great lengths to insulate the programmer from the somewhat
complex parallel port programming interface provided by the PC hardware, making it easy to use the
parallel port for digital I/O. By the same token, this abstraction also makes Parapin less useful in
applications that need to actually use the parallel port as a parallel port (e.g., for talking to a printer).

Parapin has two “personalities”: it can either be used as a user-space C library, or linked as part of
a Linux kernel module. The user and kernel personalities were both written with efficiency in mind, so
that Parapin can be used in time-sensitive applications. Using Parapin should be very nearly as fast as
writing directly to the parallel port registers manually.

Parapin provides a simple interface that lets programs use pins of the PC parallel port as digital
inputs or outputs. Using this interface, it is easy to assert high or low TTL logic values on output pins
or poll the state of input pins. Some pins are bidirectional—that is, they can be switched between input
and output modes on the fly.

Parapin was written by Jeremy Elson (jelson@circlemud.org) while at the University of South-
ern California’s Information Sciences Institute. This work was supported by DARPA under grant No.
DABT63-99-1-0011 as part of the SCADDS project, and was also made possible in part due to support
from Cisco Systems. It is freely available under the GNU Public License (GPL). Up-to-date information
about Parapin, including the latest version of the software, can be found at the Parapin Home Page1.

Warning:
Attaching custom electronics to your PC using the parallel port as a digital I/O interface can damage

both the PC and the electronics if you make a mistake. If you’re using high voltage electronics, a
mistake can also cause serious personal injury. Be careful.

If possible, use a parallel port that is on an ISA card, instead of one integrated onto the motherboard,
to minimize the expense of replacing a parallel port controller that you destroy.

USE THIS SOFTWARE AT YOUR OWN RISK.

2 Parallel Port Specifications

This section will briefly outline some of the basic electrical operating characteristics of a PC parallel
port. More detail can be found in the IBM Parallel Port FAQ2, written by Zhahai Stewart3, or the PC
Parallel Port Mini-FAQ4 by Kris Heidenstrom5. Those documents have a lot of detail about registers, bit
numbers, and inverted logic—those topics won’t be discussed here, because the entire point of Parapin
is to let programmers control the port without knowing those gory details.

The PC parallel port usually consists of 25 pins in a DB-25 connector. These pins can interface to the
TTL logic of an external device, either as inputs or outputs. Some pins can be used as inputs only, while
some can be switched in software, on-the-fly, between input mode and output mode. Note, however, that
it can be dangerous for two devices to assert an output value on the same line at the same time. Devices
that are using bidirectional pins must agree (somehow) on who is supposed to control the line at any
given time.

From the point of view of Parapin, the pinout of the parallel port is as follows:
1http://www.circlemud.org/jelson/software/parapin
2http://home.rmi.net/˜hisys/parport.html
3http://home.rmi.net/˜hisys/zstewart.html
4http://home.clear.net.nz/pages/kheidens/ppmfaq/khppmfaq.htm
5http://home.clear.net.nz/pages/kheidens/

1

mailto:jelson@circlemud.org
http://www.circlemud.org/jelson/software/parapin
http://home.rmi.net/~{}hisys/parport.html
http://home.rmi.net/~{}hisys/zstewart.html
http://home.clear.net.nz/pages/kheidens/ppmfaq/khppmfaq.htm
http://home.clear.net.nz/pages/kheidens/

Pin Direction
1 In/Out

2-9 In/Out (see note)
10 Input, Interrupt Generator
11 Input
12 Input
13 Input
14 In/Out
15 Input
16 In/Out
17 In/Out

18-25 Ground

Pins 2-9—called the parallel port’s “Data Pins”—are ganged. That is, their directions are not indi-
vidually controllable; they must be either all inputs or all outputs. (The actual values of the pins—on
or off—are individually controllable.) Also, some of the oldest parallel ports do not support switching
between inputs and outputs on pins 2-9 at all, so pins 2-9 are always outputs. Many PC motherboards
allow the user to select the personality of the parallel port in the BIOS. If you need to use pins 2-9
as bidirectional or input pins, make sure your port is configured as a “PS/2” port or one of the other
advanced port types; ports in SPP (Standard Parallel Port) mode may not support direction switching
on pins 2-9.

Pin 10 is special because it can generate interrupts. Interrupt handling is discussed in more detail in
Section 9.

Output pins can assert either a TTL high value (between +2.4v and +5.0v), or a TTL low (between 0v
and +0.8v). The port can not source much current. Specs for different implementations vary somewhat,
but a safe assumption (staying within spec) is that the voltage will be at least 2.5v when drawing up
to 2.5mA. In reality you can sometimes get away with using an output pin to power a component that
uses 3v or even 5v logic, but the supplied voltage may sag if more than 2.5mA is drawn. Input pins are
typically spec’ed to be able to sink up to about 20mA. For a more detailed treatment of the parallel port
electronics, see the references above.

3 Parapin Basics

Parapin has two personalities: one for plain user-space operation (i.e., linking Parapin with a regular
C program), and one for use with Linux kernel modules. The two personalities differ in how they are
compiled (Section 4) and initialized (Section 5). Also, only the kernel version is capable of servicing
parallel-port interrupts that are generated from Pin 10. Otherwise, the two personalities are the same.

The user-space library version of Parapin works very much like any other C library. However, kernel
programming differs from user-space programming in many important ways; these details are far beyond
the scope of this document. The best reference I’ve ever found is Alessandro Rubini’s fantastic book,
Linux Device Drivers6. Go buy it from your favorite technical bookstore; or, if you don’t have a favorite,
use my favorite: BookPool7. If you don’t want to buy the book, a far inferior alternative (but better
than nothing) is the free Linux Kernel Hacker’s Guide8.

In Parapin, there are five basic operations possible:

• Initialize the library (Section 5)

• Put pins into input or output mode (Section 6)
6http://www.ora.com/catalog/linuxdrive/
7http://www.bookpool.com/
8http://www.linuxdoc.org/LDP/khg/HyperNews/get/khg.html

2

http://www.ora.com/catalog/linuxdrive/
http://www.bookpool.com/
http://www.linuxdoc.org/LDP/khg/HyperNews/get/khg.html

• Set the state of output pins—i.e., high/set or low/clear (Section 7)

• Poll the state of input pins (Section 8)

• Handle interrupts (Section 9)

Each of these functions will be discussed in later sections.
Most of the functions take a pins argument—a single integer that is actually a bitmap representing

the set of pins that are being changed or queried. Parapin’s header file, parapin.h, defines a number
of constants of the form “LP PINnn” that applications should use to specify pins. The nn represents the
pin number, ranging from 01 to 17. For example, the command

set_pin(LP_PIN05);

turns on pin number 5 (assuming that pin is configured as an output pin; the exact semantics of set pin
are discussed in later sections). C’s logical-or operator can be used to combine multiple pins into a single
argument, so

set_pin(LP_PIN02 | LP_PIN14 | LP_PIN17);

turns on pins 2, 14, and 17.
Usually, it is most convenient to use #define statements to give pins logical names that have meaning

in the context of your application. The documentation of most ICs and other electronics gives names to
I/O pins; using those names makes the most sense. For example, a National Semiconductor ADC0831
Analog-to-Digital converter has four I/O pins called VCC (the supply voltage), CS (chip select), CLK
(clock), and D0 (data output 0). A fragment of code to control this chip might look something like this:

#include "parapin.h"

#define VCC LP_PIN02
#define CS LP_PIN03
#define CLK LP_PIN04
#define D0 LP_PIN10 /* input pin */
...
clear_pin(CS); /* pull Chip Select low, tell it to acquire */
...
set_pin(CLK); /* clock it */
clear_pin(CLK);

This method has a number of advantages. First, it makes the code more readable to someone who
has the ADC0831 documentation in hand. Second, the #define statements summarize the mappings
of IC pins to parallel port pins, making it easier to build the physical interface. Also, if the physical
interface changes, the #defines make it easy to remap parallel port pins to new IC pins.

Parapin’s header file also provides these constants in an array called LP PIN. This array is useful in
some contexts where the pin number is being specified with a variable instead of a constant. For example:

/* runway lights: light up pins 1 through 9 in sequence */
while (1) {

for (i = 1; i <= 9; i++) {
set_pin(LP_PIN[i]);
usleep(200);
clear_pin(LP_PIN[i]);

}
}

3

Code such as the above fragment would be much more complex if the programmer were forced to use
constants. There is a direct correspondence between indices in the array and pin numbers; accordingly,
only indices from 1 to 17 should be used. Programs should never reference LP_PIN[0] or LP_PIN[i]
where i > 17.

4 Compiling and Linking

4.1 The C Library Version

The user-space version of Parapin is compiled and linked very much like any other C library. If you
installed Parapin on your system using “make install”, the library (libparapin.a) was probably in-
stalled in /usr/local/lib. The header file with the library’s function prototypes and other definitions,
parapin.h, is probably also in /usr/local/include.

Note well: Parapin must be compiled with gcc using compiler optimization of -O or better. This is
because Parapin uses the inb and outb functions that exist only with compiler optimization.

To use the library, first make sure to #include parapin.h in your C source file. When linking, add
-lparapin along with any other libraries you might be using.

4.2 The Kernel Module Version

As with the C library version, kernel source code that uses Parapin must #include parapin.h. Make
sure that __KERNEL__ is defined before the include statement.

Note well: Parapin must be compiled with gcc using compiler optimization of -O or better. This is
because Parapin uses the inb and outb functions that exist only with compiler optimization.

Linking is a little more complicated. As with any other interdependent kernel modules, there are
actually two ways of using parapin with your Linux device driver:

• Compile Parapin independently, insert it into the kernel as its own module using insmod, and then
insert your driver separately using a different insmod command. In this case, insmod and the kernel
resolve the links between your driver and Parapin’s functions.

• Compile Parapin right into your device driver, so that the entire thing is inserted with a single
insmod command. This can be less confusing for users if you’re distributing your device driver to
other people because it eliminates the extra step of finding, compiling, and inserting a separate
module. On the other hand, it will cause conflicts if a user tries to insert two different modules
that use Parapin at the same time.

The Makefile that comes with Parapin compiles Parapin into its own independent module, called
kparapin.o. This module can be inserted into the kernel using insmod (as described in the first method).
If you’d rather use the second method, and link Parapin directly with your device driver module instead,
do the following:

1. Copy parapin.c into your driver’s source directory.

2. In your driver’s Makefile, compile kparapin.o from parapin.c, with the -D__KERNEL__ directive, but
without the -DMODULE directive.

3. Link kparapin.o with all the other object files that make up your driver.

If your driver only consists of one other source file, and you have never linked multiple .o’s together
into a single kernel module, it’s easy. First, compile each .c file into a .o using gcc -c (the same as with
normal C programs that span multiple source files); then, link all the .o’s together into one big .o using
ld -i -o final-driver.o component1.o component2.o component3.o

Important note: Whichever method you use, Parapin also requires functions provided by the
standard Linux kernel module parport. Make sure you insert the parport module before inserting any
modules that use Parapin; otherwise, you will get unresolved symbols.

4

5 Initialization and Shutdown

Before any other Parapin functions can be used, the library must be initialized. Parapin will fail un-
gracefully if any functions are called before its initialization. This is because the library’s other functions
do not check that the library is in a sane state before doing their jobs. This was an intentional design
decision because the maximum possible efficiency is required in many applications that drive the parallel
port at high speeds. My goal was for Parapin to be almost as fast as directly writing to registers.

The exact initialization method varies, depending on if Parapin is being used as a C library or as a
kernel module.

5.1 The C Library Version

C library initialization is performed using the function

int pin_init_user(int lp_base);

whose single argument, lp base, specifies the base I/O address of the parallel port being controlled.
Common values of lp base are 0x378 for LPT1, or 0x278 for LPT2; parapin.h defines the constants
LPT1 and LPT2 to these values for convenience. However, the exact port address may vary depending
on the configuration of your computer. If you’re unsure, the BIOS status screen displayed while the
computer boots usually shows the base addresses of all detected parallel ports.

Programs using Parapin must be running as root when they are initialized. Initialization
of the library will fail if the process is owned by any user other than the super-user because Parapin
has to request the right to write directly to hardware I/O registers using the ioperm function. The
security-conscious programmer is encouraged to drop root privileges using setuid after a successful call
to pin init user.

The return value of pin init user will be 0 if initialization is successful, or -1 if there is an error.
Applications must not call other Parapin functions if initialization fails. Failed initialization is usually
because the program is not running as root.

No shutdown function needs to be called in the C library version of Parapin.

5.2 The Kernel Module Version

Initialization and shutdown in the kernel flavor of Parapin is done using the following two functions:

int pin_init_kernel(int lpt,
void (*irq_func)(int, void *, struct pt_regs *));

void pin_release();

The first function is not as intimidating as it looks. Its first argument, lpt, is the parallel port
number that you want to control. The number references the kernel’s table of detected parallel ports; 0
is the first parallel port and is a safe guess as a default.

The second argument, irq func, is a pointer to a callback function to be used for servicing interrupts
generated by the parallel port. This argument may be NULL if the driver does not need to handle
interrupts. Details about interrupt handling are discussed in Section 9.

pin init kernel will return 0 on success, or a number less than 0 on error. The return value will be
a standard errno value such as -ENODEV, suitable for passing up to higher layers. If Parapin initialization
fails, the driver must not call Parapin’s other functions. As described earlier, this requirement is not
enforced for efficiency reasons.

When a driver is finished controlling the parallel port using Parapin, it must call pin release.
The state of the parallel port’s interrupt-enable bit will be restored to the state it was in at the time
pin init kernel was originally called.

Parapin’s pin init kernel and pin release functions work with the Linux kernel’s standard parport
facility; as noted above, the parport module must be loaded along with any module that uses Parapin.

5

When initialized, Parapin will register itself as a user of the parallel port, and claim exclusive access to
that port. This means no other processes will be allowed to use the parallel port until pin release is
called.

6 Configuring Pins as Inputs or Outputs

As shown in the table in Section 2, most of the pins on modern parallel ports can be configured as either
inputs or outputs. When Parapin is initialized, it is safest to assume that the state of all these switchable
pins is undefined. That is, they must be explicitly configured as outputs before values are asserted, or
configured as inputs before they are queried.

As mentioned earlier, Pins 2-9 can not be configured independently. They are always in the same
mode: either all input or all output. Configuring any pin in that range has the effect of configuring all
of them. The constant LP DATA PINS is an alias that refers to all the pins in this range (2-9).

The other switchable pins (Pins 1, 14, 16, and 17) may be independently configured. Pins 10, 11, 12,
13, and 15 are always inputs and can not be configured.

It is also worth reiterating that having two devices both try to assert (output) a value on the same
pin at the same time can be dangerous. The results are undefined and are often dependent on the
exact hardware implementation of your particular parallel port. This situation should be avoided. The
protocol spoken between the PC and the external device you’re controlling to should always agree who
is asserting a value on a pin and who is reading that pin as an input.

Pins are configured using one of the following three functions:

void pin_input_mode(int pins);
void pin_output_mode(int pins);
void pin_mode(int pins, int mode);

The pins argument of all three functions accepts the LP PINnn constants described in Section 3.
The pin mode function is just provided for convenience; it does the same thing as the pin input and
pin output functions. Its mode argument takes one of the two constants LP INPUT or LP OUTPUT. Calling
pin mode(pins, LP INPUT) is exactly the same as calling pin input(pins).

Examples:

pin_input_mode(LP_PIN01);
/* Pin 1 is now an input */

pin_output_mode(LP_PIN14 | LP_PIN16);
/* Pins 14 and 16 are now outputs */

pin_mode(LP_PIN02, LP_INPUT);
/* Pins 2 through 9 are now ALL inputs */

pin_mode(LP_PIN01 | LP_PIN02, LP_OUTPUT);
/* Pin 1, and Pins 2-9 are ALL outputs */

pin_input_mode(LP_DATA_PINS);
/* The constant LP_DATA_PINS is an alias for Pins 2-9 */

7 Setting Output Pin States

Once Parapin has been initialized (Section 5), and pins have been configured as output pins (Section 6),
values can be asserted on those pins using the following functions:

6

void set_pin(int pins);
void clear_pin(int pins);
void change_pin(int pins, int state);

The pins argument of all three functions accepts the LP PINnn constants described in Section 3.
set pin turns pins on, electrically asserting high TTL values. clear pin turns pins off, electrically
asserting low TTL values. The convenience function change pin does the same thing as set pin and
clear pin; its state argument takes one of the constants LP SET or LP CLEAR. Calling change pin(pins,
LP SET) has exactly the same effect as calling set pin(pins).

These three functions will only have effects on pins that were previously configured as output pins as
described in Section 6. Attempting to assert a value on an input pin will have no effect.

Note that while the direction of Pins 2-9 must be the same at all times (i.e., either all input or all
output), the actual values of these pins are individually controllable when they are in output mode.

Examples:

pin_output_mode(LP_PIN01|LP_DATA_PINS|LP_PIN14|LP_PIN16|LP_PIN17);
/* All these pins are now in output mode */

set_pin(LP_PIN01 | LP_PIN04 | LP_PIN07 | LP_PIN14 | LP_PIN16);
/* Pins 1, 4, 7, 14, and 16 are all on */

clear_pin(LP_PIN01 | LP_PIN16);
/* Pins 1 and 16 are now off */

change_pin(LP_PIN01 | LP_PIN02, some_integer ? LP_SET : LP_CLEAR);
/* Pins 1 and 2 are now off if and only if some_integer == 0 */

8 Polling Input Pins

Once Parapin has been initialized (Section 5), and pins have been configured as input pins (Section 6),
the value being asserted by the “far end” can be queried using the following function:

int pin_is_set(int pins);

Any number of pins can be queried simultaneously. The pins argument accepts the LP PINnn con-
stants described in Section 3. The return value is an integer in the same format. Any pins that are set
(electrically high) will be set in the return value; pins that are clear (electrically low) will be clear in the
return value.

Pins may only be queried if:

• They are permanent input pins (Pins 10, 11, 12, 13, and 15), as described in Section 2, or

• They are bidirectional pins previously configured as input pins, as described in Section 6.

Any query to an output pin will always return a value indicating that the pin is clear. In other words,
this function can not be used to determine what value was previously asserted to an output pin.

Examples:

pin_input_mode(LP_PIN01 | LP_DATA_PINS | LP_PIN17);
/* Pins 1, 2-9, and 17 are now in input mode, along with

Pins 10, 11, 12, 13, and 15, which are always inputs */

/* check the state of pin 1 */
printf("Pin 1 is %s!\n", pin_is_set(LP_PIN01) ? "on" : "off");

7

/* check pins 2, 5, 10, and 17 - demonstrating a multiple query */
int result = pin_is_set(LP_PIN02 | LP_PIN05 | LP_PIN10 | LP_PIN17);

if (!result)
printf("Pins 2, 5, 10 and 17 are all off\n");

else {
if (result & LP_PIN02)

printf("Pin 2 is high!\n");
if (result & LP_PIN05)

printf("Pin 5 is high!\n");
if (result & LP_PIN10)

printf("Pin 10 is high!\n");
if (result & LP_PIN17)

printf("Pin 17 is high!\n");
}

9 Interrupt (IRQ) Handling

The kernel-module version of Parapin lets parallel port drivers catch interrupts generated by devices
connected to the parallel port. Most hardware generates interrupts on the rising edge9 of the input to
Pin 10.

Before Parapin’s interrupt-handling can be used, the Linux kernel itself must be configured to handle
parallel port interrupts. Unlike most other hardware devices, the kernel does not detect or claim the
parallel port’s interrupts by default. It is possible to manually enable kernel IRQ handling for the parallel
port by writing the interrupt number into the special file /proc/parport/n/irq, where n is the parallel
port number. For example, the following command tells the kernel that parport0 is using IRQ 7:

echo 7 > /proc/parport/0/irq

If parallel port support is being provided to the kernel through modules, it is also possible to configure
the IRQ number as an argument to the parport pc module when it is loaded. For example:

insmod parport
insmod parport_pc io=0x378 irq=7

Note that both the io and irq arguments are required, even if the parallel port is using the default I/O
base address of 0x378.

The actual interrupt number used by the kernel (7 in the examples above) must, of course, match
the interrupt line being used by the hardware. The IRQ used by the parallel port hardware is usually
configured in the BIOS setup screen on modern motherboards that have built-in parallel ports. Older
motherboards or stand-alone ISA cards usually have jumpers or DIP switches for configuring the interrupt
number. The typical assignment of interrupts to parallel ports is as follows:

Port Interrupt
LPT1 7
LPT2 5

These are reasonable defaults if the actual hardware configuration is not known.
As described in Section 5, the pin init kernel() function allows installation of an interrupt handler

function by passing a pointer to the handler as the second argument. A NULL value for this parameter
means that interrupts are disabled. A non-NULL value should be a pointer to a callback function that
has the following prototype:

9Legend has it that some very old parallel port hardware generates interrupts on the falling edge.

8

void my_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs);

If and only if a pointer to such a handler function is passed to pin init kernel, the following
functions can then be used to turn interrupts on and off:

pin_enable_irq();
pin_disable_irq();

Parapin turns parallel port interrupts off by default. That is, no interrupts will be gener-
ated until after a call to pin init kernel() to install the interrupt handler, and a subsequent call to
pin enable irq();

Interrupts must not be enabled and disabled from within the interrupt handler it-
self. In other words, the interrupt handling function passed to pin init kernel() must not call
pin enable irq() or pin disable irq(). However, the handler function does not need to be reen-
trant: the IRQ line that causes an interrupt handler to run is automatically disabled by the Linux kernel
while the interrupt’s handler is running. There are other important restrictions on kernel programming
in general and interrupt-handler writing in particular; these issues are beyond the scope of this document.
For more details, the reader is referred to the Linux kernel programming guides mentioned in Section 3.

Some PC hardware generates a spurious parallel port interrupt immediately after the parallel port’s in-
terrupts are enabled (perhaps to help auto-detection of the IRQ number). Parapin includes a workaround
that prevents this interrupt from being delivered. This is done to ensure consistent interrupt behavior
across all platforms.

10 Examples

Example code using Parapin is included in the Parapin distribution. Eventually, this section will have
links to it...

11 Limitations and Future Work

Currently, Parapin only supports a single parallel port at a time. It is not possible to have a single
instance of the library manage multiple instances of a parallel port. This may be a problem for software
that is simultaneously trying to control multiple parallel ports. Someday, I may fix this, but it will make
the interface messier (a port handle will have to be passed to every function along with pin specifiers).

The C-library version of Parapin should probably do better probing of the parallel port, but my desire
to do this was limited because it replicates what is already done by the Linux kernel (and I usually use
the kernel version of Parapin these days anyway).

If you have bug reports, patches, suggestions, or any other comments, please feel free to contact me
at jelson@circlemud.org. I love getting feedback.

9

mailto:jelson@circlemud.org

	Introduction
	Parallel Port Specifications
	Parapin Basics
	Compiling and Linking
	The C Library Version
	The Kernel Module Version

	Initialization and Shutdown
	The C Library Version
	The Kernel Module Version

	Configuring Pins as Inputs or Outputs
	Setting Output Pin States
	Polling Input Pins
	Interrupt (IRQ) Handling
	Examples
	Limitations and Future Work

