
Porting CircleMUD to New Platforms

Jeremy Elson

December 11, 2001

Abstract

CircleMUD is a very portable program by design, but is not guaranteed to run on
every platform that exists. This document is for experienced programmers trying to
make CircleMUD work on their platform.

1 Introduction

CircleMUD should work on most UNIX platforms without any modifications; simply run
the “configure” script and it should automatically detect what type of system you have
and anything that may be strange about it. These findings are all stored in a header file
called conf.h which is created in the src directory from a template called conf.h.in. A
Makefile is also created from the template Makefile.in.

Non-UNIX platforms are a problem. Some can’t run CircleMUD at all. However, any
multitasking OS that has an ANSI C compiler, and supports non-blocking I/O and socket-
based TCP/IP networking, should theoretically be able to run CircleMUD; for example,
OS/2, AmigaOS, Mac OS (Classic versions; Mac OS X supports CircleMUD’s configure
script from the command line), Windows 3.11/NT/9*.

The port can be very easy or very difficult, depending mainly on whether or nor your
OS supports the Berkeley socket API. Windows 95, for example, supports Berkeley sockets
with a few modifications using the WinSock library, and OS/2 supports Berkeley sockets
with no source changes at all.

The general steps for porting CircleMUD to a non-UNIX platform are listed below. A
number of tips for porting can be found after the porting steps. Note that we have already
ported Circle to Windows 95, so if you’re confused as to how to perform some of these steps,
you can look at what we have done as an example (see the files conf.h.win, Makefile.win
and README.WIN).

1



Note that you should not try to do this unless you are an experienced C programmer
and have a solid, working knowledge of the system to which you are trying to port the code.

2 Porting the Code

Step 1. Create a “conf.h” file for your system.
Copy the template “conf.h.in” to “conf.h”, and then define or undefine each item
as directed by the comments and based on the characteristics of your system. To write
the conf.h file, you’ll need to know which header files are included with your system,
the return type of signals, whether or not your compiler supports the ‘const’ keyword,
and whether or not you have various functions such as crypt() and random().
Also, you can ignore the HAVE LIBxxx and HAVE xxx PROTO constants at the end of
conf.h.in; they are not used in the code (they are part of UNIX autoconf).

Step 2. Create a Makefile.
Again, copy the template Makefile.in and make any changes which may be appro-
priate for your system. Make sure to remove the @xxx@ variables such as @LIBS@,
@CC@, @NETLIB@, etc., and replace them with the appropriate values if necessary.

Step 3. Make the appropriate patches to the code so that the TCP/IP reads and writes
and signal handling are compatible with your system. This is the hardest part of
porting CircleMUD. All of the changes you will need to make will probably be in the
source file comm.c.

Step 4. Test your changes! Make sure that multiple people can log in simultaneously and
that they can all type commands at the same time. No player should ever have a
“frozen” screen just because another is waiting at a prompt. Leave the MUD up for at
least 24 hours, preferably with people playing it, to make sure that your changes are
stable. Make sure that automatic events such as zone resets, point regeneration, and
corpse decomposition are being timed correctly (a tick should be about 75 seconds).
Try resetting all the zones repeatedly by typing “zr *” many times. Play the MUD
and make sure that the basic commands (killing mobs as a mortal, casting spells,
etc.) work correctly.

Step 5. If you are satisfied that your changes work correctly, you are encouraged to submit
them to be included as part of the stock CircleMUD distribution so that future releases
of Circle will support your platform. This prevents you from re-porting the code every
time a new version is released and allows other people who use your platform to enjoy
CircleMUD as well.
To submit your changes you must make a patch file using the GNU ‘diff’ program
which can be downloaded by anonymous FTP from ftp://ftp.gnu.org:/pub/gnu/
diffutils-x.x.tar.gz. diff will create a patch file which can be later used with
the ‘patch’ utility to incorporate your changes into the stock CircleMUD distribution.
For example, if you have a copy of stock (plain) CircleMUD in the “stock-circle”
directory, and your changes are in “my-circle”, you can create a patch file like this:

2



diff -u --new-file --recursive stock-circle/src my-circle/src > patch

This will create a file called ‘patch’ with your patches. You should then try to use
the ‘patch’ program (the inverse of ‘diff’) on a copy of stock circle to make sure that
Circle is correctly changed to incorporate your patches.
This step is very important: if you don’t create these patches correctly, your work
will be useless because no one will be able to figure out what you did! Make sure
to read the documentation to ‘diff’ and ‘patch’ if you don’t understand how to use
them.
If your patches work, CELEBRATE!!

Step 6. Write a README file for your operating system that describes everything that has
to be done by another user of your operating system to get CircleMUD to compile
from scratch. You should include a section on required hardware, software, compil-
ers, libraries, etc. Also include detailed, step-by-step instructions on how to com-
pile and run everything. You can look at the other README files in the distribution
(README.WIN, README.OS2, etc.) for examples of what your README file should include.

Step 7. You are done! Congratulations! Mail your conf.h, Makefile, patches, and
README file to the CircleMUD Group <cdev@circlemud.org> so that they can be
included in future releases of CircleMUD. Please share your work so that other users
of your OS can use Circle, too.

3 Porting Tips

Some tips about porting:

3.1 Making your own CIRCLE system constant

Each system to which Circle is already ported has a CIRCLE xx constant associated with
it: CIRCLE UNIX for plain vanilla UNIX CircleMUD, CIRCLE WINDOWS for MS Win95/NT,
CIRCLE OS2 for IBM OS/2, and CIRCLE AMIGA for the Amiga. You must use a similar
constant for your system. At the top of your conf.h, make sure to comment out “#define
CIRCLE UNIX” and add “#define CIRCLE YOUR SYSTEM”.

3.2 ANSI C and GCC

As long as your system has an ANSI C compiler, all of the code (except for comm.c)
should compile with no major complaints. However, Circle was written using gcc, and
some compilers are nitpicky about things that gcc does not care about (and the other way

3



around). Therefore, you are highly encouraged to use gcc if at all possible. gcc has been
ported to a very large number of platforms, possibly including yours, and your port will
be made much easier if you use gcc. You can download gcc via anonymous FTP from
ftp://ftp.gnu.org:/pub/gnu/.

3.3 Non-Blocking I/O

Make absolutely sure to use non-blocking I/O; i.e. make sure to enable the option so that
the read() system call will immediately return with an error if there is no data avail-
able. If you do not use non-blocking I/O, read() will “block,” meaning it will wait in-
finitely for one particular player to type something even if other players are trying to enter
commands. If your system does not implement non-blocking I/O correctly, try using the
POSIX NONBLOCK BROKEN constant in sysdep.h.

3.4 Timing

CircleMUD needs a fairly precise (on the order of 5 or 10 ms) timer in order to correctly
schedule events such as zone resets, point regeneration (“ticks”), corpse decomposition, and
other automatic tasks. If your system supports the select() system call with sufficient
precision, the default timing code should work correctly. If not, you’ll have to find out
which system calls your system supports for determining how much time has passed and
replace the select() timing method.

3.5 Signals and Signal Handlers

A note about signals: Most systems don’t support the concept of signals in the same way
that UNIX does. Since signals are not a critical part of how Circle works anyway (they
are only used for updating the wizlist and some other trivial things), all signal handling
is turned off by default when compiling under any non-UNIX platform (i.e. the Windows
95 and Amiga ports do not use signals at all.) Simply make sure that CIRCLE UNIX is not
defined in your conf.h file and all signal code will be ignored automatically.

4 Final Note

IMPORTANT: Remember to keep any changes you make surrounded by #ifdef state-
ments (i.e. “#ifdef CIRCLE WINDOWS ... #endif”). If you make absolutely sure to mark all
of your changes with #ifdef statements, then your patches (once you get them to work) will

4



be suitable for incorporation into the CircleMUD distribution, meaning that CircleMUD
will officially support your platform.

5


